Efficacy and Use of Push-Dose Epinephrine for Peri-intubation Hypotension

Jennifer Harklerode, PharmD¹; Christine Ciaramella, PharmD, BCCCP¹; Adebanke Adebayo, MD²

¹The Brooklyn Hospital Center, Department of Pharmacy, Division of Pharmacotherapy, Brooklyn, New York; ²The Brooklyn Hospital Center, Department of Emergency Medicine, Brooklyn, New York

BACKGROUND

- Efficacy of push-dose vasopressors is well described in anesthesia literature for management of hypotension in the operating room (OR)¹
- Increase use of push-dose vasopressors outside of the OR for transient hypotension observed as a result of intubation or procedural sedation or as a bridge to a continuous vasopressor infusion (CVI)¹
- Efficacy of push-dose phenylephrine for peri-intubation hypotension has been studied in patients presenting to the emergency department (ED) resulting in an increase in mean systolic blood pressure (SBP) and mean diastolic blood pressure (DBP)²
- Minimal literature currently exists on the use of push-dose epinephrine (PDE)
- Case report describing use of PDE following witnessed cardiac arrest showed improvement in blood pressure in all patients³
- PDE has been studied in transport of critically ill patients showing an increase in mean arterial pressure (MAP), increase in heart rate (HR), and resolution of hypotension reported in 58.5% of patients following a single dose⁴

OBJECTIVE

• Describe the effect of and current practice patterns for the use of PDE for peri-intubation hypotension

METHODS

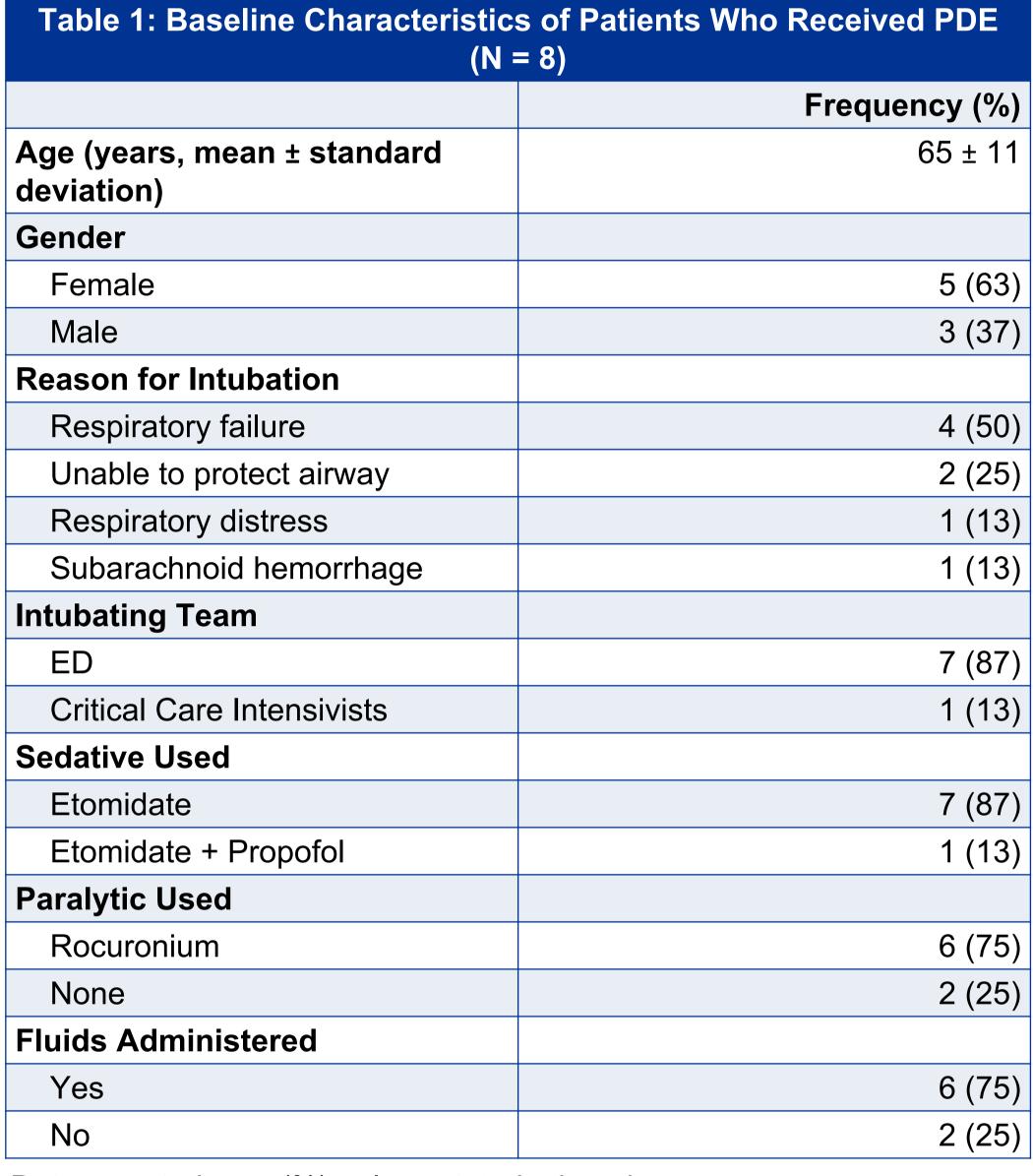
• Single center, retrospective, Institutional Review Board approved, descriptive evaluation of patients undergoing intubation from October 30, 2019 to January 31, 2020

Inclusion Criteria	Exclusion Criteria
Age ≥ 18 years	Initiated on CVI prior to intubation
Underwent intubation	
Hypotensive (defined as SBP < 90 mmHg)	
Received at least one dose of PDE during the peri- intubation period*	

^{*}Defined as 30 minutes before and after intubation

Primary Outcome

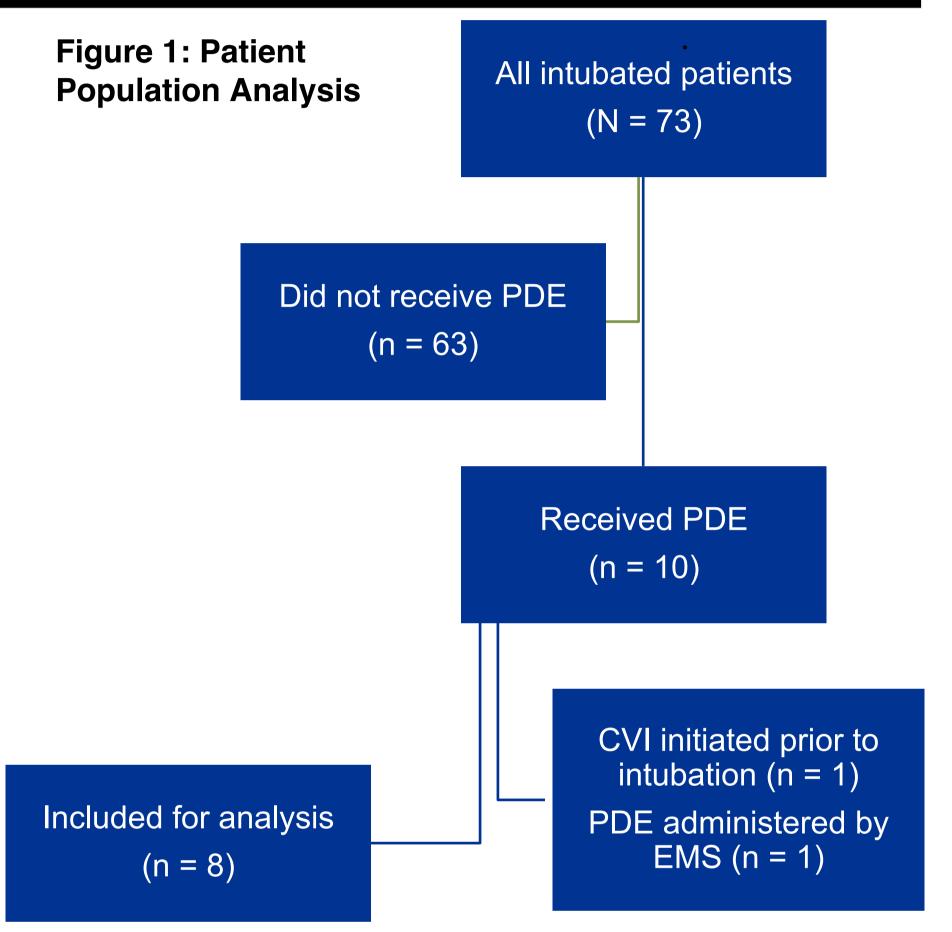
• Change in hemodynamics (i.e. SBP, DBP, HR, MAP) before and after administration of PDE


Secondary Outcomes

- Dose and number of doses of PDE administered
- Initiation of a CVI
- Resolution of hypotension (defined as SBP ≥ 90 mmHg)
- Adverse events (defined as extreme hypertension [SBP ≥ 180 mmHg], extreme tachycardia [HR ≥ 40 bpm], dysrhythmias, or cardiac arrest)

Statistics

- Primary outcome was evaluated using a paired t-test
- Secondary outcomes were evaluated using descriptive statistics [i.e. mean +/- standard deviation, median (range)]
- P-value < 0.05 was considered statistically significant


RESULTS

Data reported as n (%) unless stated otherwise

Table 2: Effect of PDE on SBP, DBP, HR, and MAP (n = 5)				
	SBP (mmHg)	DBP (mmHg)	HR (beats/min)	MAP (mmHg)
Pre-PDE	80 (59-101)	49 (40-58)	98 (69-127)	60 (48-72)
Post-PDE	135 (108-162)*	67 (44-90)	96 (31-161)	90 (70-110)

Data reported as mean (95% confidence interval) *P < 0.05

(N = 8)		
	Frequency (%)	
Received > 1 Dose of PDE	2 (25)	
First Dose (mcg, mean ± standard deviation)	16 ± 11	
Doses (mean ± standard deviation)	1 ± 1.5	
Total Dose (mcg, mean ± standard deviation)	25 ± 19	
CVI Initiated	6 (75)	
Norepinephrine	6 (75)	
Resolution of Hypotension		
Yes	5 (63)	
Unable to determine	3 (37)	
Data reported as a (0/) uplace of	stated athornica	

Table 3: Usage of PDE

Data reported as n (%) unless stated otherwise

RESULTS

Table 4: Adverse Events after Receiving PDE (N = 8)				
	Frequency (%)			
Extreme Hypertension	1 (13)			
Extreme Tachycardia	0			
Dysrhythmias	0			
Cardiac Arrest	0			

Data reported as n (%)

DISCUSSION

- Majority of patients were 65-year-old females intubated for respiratory failure by ED providers
- Most common medications used for intubation were etomidate and rocuronium
- Administration of PDE resulted in an increase in SBP, DBP, and MAP for all patients
- Statistically significant increase in SBP
- Majority (75%) of patients received one 20 mcg dose of PDE
- Majority (75%) of patients were initiated on norepinephrine infusion post-intubation
- PDE was used as a bridge to CVI
- PDE used during the peri-intubation period showed temporary stabilization of blood pressure until CVI was initiated
- Majority (63%) of patients had resolution of hypotension after the initial dose(s)
- Limitations include small sample size, retrospective design, and lack of documentation of hemodynamic parameters
- PDE may be useful as a bridge to CVI in practice settings where CVI is not readily available or as a quicker means to stabilization of blood pressure in a critically ill patient

REFERENCES

- . Weingart S. Push-dose pressors for immediate blood pressure control. Clin Exp Emerg Med. 2015;2(2):131-132.
- 2. Panchal, et al. Efficacy of bolus-dose phenylephrine for peri-intubation hypotension. J Emerg Med. 2015; 49(4):488-494.
- 3. Gottlieb M. Bolus dose of epinephrine for refractory post-arrest hypotension. CJEM. 2018:S9-S13.
- 4. Nawrocki, et al. Push dose epinephrine use in the management of hypotension during critical care transport. Prehosp Emerg Care. 2019; 1-7.

Disclosures: The authors of this presentation have the following to disclose concerning possible financial or personal relationships with commercial entities: None

