Complexities of Antifungal Therapy Made Simple

Christine Kubin, PharmD, BCPS-AQID, BCIDP Clinical Pharmacy Lead, Infectious Diseases Department of Pharmacy and Division of Infectious Diseases NewYork-Presbyterian Hospital Columbia University Irving Medical Center

-NewYork-Presbyterian

COLUMNAL CONTRACTOR

Presenter Disclosure

Christine Kubin, PharmD, BCPS-AQID, BCIDP

There are no relationships to disclose related to this presentation.

Unlabeled/unapproved uses of antifungal drugs will be discussed.

Objectives

Pharmacists:

1. Discuss differences in antifungal spectrums of activity for the most commonly used antifungals.

2. Differentiate the antifungals based on their adverse effect profile.

3. Explain the need for antifungal therapeutic drug monitoring and apply this knowledge to clinical practice.

Technicians:

- 1. Recognize the different classes of antifungal agents.
- 2. Describe the adverse effects of antifungal agents.
- 3. Explain the need for antifungal therapeutic drug monitoring.

Fungal Classification

The Big Five

Candida sp. Aspergillus sp. Zygomycetes Cryptococcus neoformans <u>Pneumocystis jirovecii</u>

Risk Factors for Fungal Infections

Age

Corticosteroids

Recent or current use of antibiotics

Central venous catheters

Diabetes

Renal replacement therapy

TPN

Malnutrition

Abdominal surgery

Fungal colonization Prolonged mechanical ventilation Prolonged ICU stay High disease severity

Immunosuppression Chemotherapy/radiation Mucositis Prolonged neutropenia

Muskett, et al. Crit Care 2011; 15(6): R287. Kullberg BJ, et al. N Engl J Med 2015; 373: 1445-56.

Invasive Fungal Infections (IFIs) in the ICU

Extended Prevalence of Infection in Intensive Care (EPIC II)

 $^{\circ}$ 19% of isolated pathogens were fungi ightarrow 88% Candida

Candida sp. 3rd most common cause of bloodstream infections in the ICU (10%)

Attributable mortality of candidemia 5-71%

- $\circ\,$ Candidemia associated with \uparrow LOS and hospital costs
- $^\circ\,$ Delays in therapy associated with \uparrow mortality

Vincent, et al. JAMA 2009; 302(21): 2323-9. Wisplinghoff, et al. Clin Infect Dis 2004; 39: 309-17. Pfaller, et al. Clin Micro Rev 2007; 20: 133-63. Garey, et al. Clin Infect Dis 2006; 43: 25-31.

IFIs in Solid Organ Transplant

Table 2.	No. (%) of Invasive Fungal Infection (IFI) Cases in the Surveillance Cohort, by Transplant
Type	

IFI type	Kidney (n = 332)	Liver (n = 378)	Pancreas (n = 128)	Lung In = 248)	Heart (n = 99)	Small bowel (n = 22)
Candidiasis	164 (49)	265 (68)	97 (76)	56 12:37	48 (49)	19 (85)
Aspergitosis	47 (14)	42 (11)	6 (5)	109 (44)	23 (23)	0 (0)
Zygomycosis	8 (2)	9 (2)	0 (0)	8 (3)	3 (3)	0 (0)
Other mold	10 (3.0)	9 (2.4)	4 (3.1)	49 (19.8)	7 (7.1)	0 (0.0)
Unspecified mold	7 (2.1)	8 (2.1)	0.010	7 (2.8)	2 (2.0)	0 (0.0)
Cryptococcosis	49 (15)	24 (6)	6 (5)	6 (2)	10 (10)	1 (5)
Endemic mycoses	33 (10)	17 (5)	8 (6)	3 (1)	3 (3)	0 (0)
Pneumocystosis	5 (1)	0 900	1 (1)	4 (2)	3 (3)	0 (0)
Other yeast	6 (1.8)	9 (2.4)	5 (3.9)	0 10.01	0 (0,0)	1 (5)
Unspecified yeast	3 (0.9)	5 (1.3)	1 (0.8)	6 (2.4)	0 (0.0)	1 (5)

Pappas, et al. Clin Infect Dis 2010; 50: 1101-11. Andes, et al. Transpl Infect Dis 2016;18(6):921-931.

IFIs in Stem Cell Transplant

43% invasive aspergillosis

• Median onset 99 days

28% invasive candidiasis

- Median onset 61 days
- 8% mucormycosis

Kontoyiannis, et al. Clin Infect Dis 2010; 50: 1091-1100.

Choosing an Antifungal

Spectrum Toxicities Dose

Fungal Cell Membrane and Cell Wall

Slide adapted from R. Lewis; posted at www.doctorfungus.org.

Activities of Antifungal Agents against *Candida* species

Species	Fluconazole	Itraconazole	Voriconazole	Posaconazole	Isavuconazole	Amphotericin B	Echinocandins
C. albicans	S	S	S	S	S	S	S
C. tropicalis	S	S	S	S	S	S	S
C. parapsilosis	S	S	S	S	S	S	S to R
C. glabrata	S-DD to R	S-DD to R	S-DD to R	S-DD to R	S-DD to R	S to I	S
C. krusei	R	S-DD to R	S	S	S	S to I	S
C. lusitaniae	S	S	S	S	S	S to R	S
C. auris	R	R	R	R	R	S to R	S to R

S: susceptible; S-DD: susceptible dose-dependent; I: intermediate; R: resistant

Pappas, et al. Clin Infect Dis 2009; 48: 503-35. Nett, et al. Infect Dis Clin N Am 2016; 51-83.

Activity of Antifungals against non-*Candida* Species

Fungus	Fluconazole	Itraconazole	Voriconazole	Posaconazole	Isavuconazole	Amphotericin B	Echinocandins
Aspergillus spp.	X	√	√	√	\checkmark	✓ (not A. terreus)	✓
Fusarium	x	х	✓ (breakthrus)	Conflicting data	х	✓ occas R	х
Scedosporium	X	+/-	✓	+/-	+/-	✓ occas R	х
Zygomycetes	x	х	x	✓	V	V	х
Cryptococcus	✓	✓	✓	✓	✓	✓	Х

X = no in vitro activity

= in vitro activity

R = resistance

Adapted from Arikan & Rex. *Manual of Clinical Microbiology, eighth edition.* 2003, p. 1859. Nett, et al. Infect Dis Clin N Am 2016; 51-83.

Choosing an Antifungal

Adverse Reactions

Type of toxicity	AmB	ABCD	ABLC	LAB	Flu	ltr	Vor	Pos	Anidulafungin	Caspofungin	Micafungin	Flucytosine
Hepatic	++	++	++	++	+	+	+	+	+	+	+	++
Nephrotic	++++	+++	+++	++	-	_	_	-	-	_	_	-
Hematologic	+	+	+	+	NR	NR	NR	NR	NR	+	+	+++
Infusion-related	+++	+++	+++	++	-	_	_	NA	+	+	+	NA
Electrolyte abnormalities ^a	+++	++	++	++	NR	+	+	NR	+	+	NB	+

Amphotericin B

- Renal toxicity
- Electrolyte abnormalities
- Infusion-related reactions

Azoles

- Hepatotoxicity: itraconazole >> voriconazole >> posaconazole, isavuconazole > fluconazole
- **QTc prolongation**: all, EXCEPT isavuconazole
- CNS effects: voriconazole
- **Photosensitivity/Skin**: increased risk with voriconazole

Flucytosine

- Bone marrow suppression
- Hepatotoxicity

Dodds Ashley. Clin Infect Dis 2006; 43: S28-39.

Beware of Added Toxicities

Hepatotoxicity

Terbinafine combination, macrolides, anti-mycobacterial therapy

QTc

Psychotropics, macrolides, quinolones

Renal toxicity

 Vancomycin, aminoglycosides, TMP/SMX, colistin/polymyxin B, calcineurin inhibitors (posttransplant)

Long Term Safety?

Voriconazole associated with most data

- Squamous cell carcinomas and melanomas (3.1-39.5%)
- Periostitis (10%)
- Peripheral neuropathies (9%)

Peripheral neuropathies also reported with itraconazole (17%), posaconazole (1 case), isavuconazole (1 case)

Squamous cell carcinoma reported in 2 cases with isavuconazole

Mourad et al. J Antimicrob Chemother. 2018;73(suppl 1):i26-i32. Baxter et al. J Antimicrob Chemother. 2011;66(9):2136-9. DiPippo et al. Clin Infect Dis. 2019 Mar 7. doi: 10.1093/cid/ciz159.

Choosing an Antifungal

Spectrum Toxicities

Dose

Getting the Dose Right

Pharmacokinetics

	Fluconazole	Itraconazole	Voriconazole	Posaconazole	Isavuconazole	Amphotericin B	Echinocandins	Flucytosine
Oral bioavailability	>90%	30% (caps) 50% (soln)	>90%	8-47% (dose-dependent)	98%	<5%	<5%	80%
Protein binding	10%	>99%	58%	>98%	98%	>95%	85-99%	4%
Food effect	\downarrow Absorption	\uparrow Absorption (caps) \downarrow Absorption (soln)	\downarrow Absorption	↑ Absorption	None	n/a	n/a	n/a
CSF penetration	> 52%	<1%	60%	5-22%	<1%	<1%	<1%	75%
Urine penetration	90%	1-10%	<2%	<2%	<1%	≤5%	<2%	90%
Metabolism	Minor hepatic (CYP3A4)	Hepatic (CYP3A4)	Hepatic (CYP2C19/2C9)	Hepatic (UDP glucuronidation)	Hepatic (CYP3A4)	Minimal	None Hepatic	Minor intestinal
Elimination	Renal	Hepatic	Renal	Feces	Feces	Minor	Urine Feces	Renal

Lewis R. Mayo Clin Proc 2011; 86: 805-817. Barde et al. Antimicrob Agents Chemother 2019; 63:e01184-19. Dodds Ashley E. J Fungi (Basel) 2019; 5: 97.

PK Challenges

Absorption

- Itraconazole: dependent on formulation, food, pH
- Voriconazole: dependent on age (\downarrow 50% in children), patient population (lung transplant *F*24-63%)
- Posaconazole: saturable absorption, dependent on food, pH
 - Oral solution: needs fatty supplement
 - $^\circ\,$ Oral delayed-release tabs: \uparrow 50% with fatty meal, not affected by pH

Elimination

• Voriconazole: non-linear PK in adults (\uparrow dose 1.7-fold \rightarrow \uparrow AUC 3.1-fold)

Genetic Polymorphisms

CYP2C19 impacts voriconazole metabolism and concentrations

Table 1. Proposed nomenclature for polymorphic CYP2C19.

Proposed CYP2C19 phenotype	Required alleles	Allele numbering example(s)	
Ultrarapid metabolizer (UM)	2 increased-function	*17/*17	Ultrarapid (2-5%)/rapid metabolizers (30%)
Rapid metabolizer (RM)	1 normal function and 1 increased-function	*1/*17	UM/RMs: troughs decreased by 50%
Normal metabolizer (NM)	2 normal function	*1/*1	
Intermediate metabolizer (IM)	1 normal function and 1 no- function OR	*1/*2, *1/3 OR *2/*17	Intermediate (18-45%)/poor metabolizers (2-15
	1 no-function and 1 increased- function		
Poor metabolizer (PM)	2 no-function	*2/*2, *2/*3, *3/*3	PMs: concentrations 3-4x higher than normal

Amsden, et al. Expert Opin Drug Metab Toxicol 2017; 13(11): 1135-46. Meletiadis, et al. Clin Microbiol Rev 2006; 19:763-87.

Voriconazole Concentrations

Meletiadis, et al. Clin Microbiol Rev 2006; 19:763-87.

CYP450 Drug Interactions

Cytochrome P450 most common drug metabolizing enzymes

Substrates: drug metabolized by CYP450 enzyme

Azoles as Inhibitors and Substrates

	Fluconazole	Itraconazole	Voriconazole	Posaconazole	Isavuconazole
Inhibitor					
CYP2C19	+	-	+++	-	-
CYP2C9	++	+	++	-	-
CYP3A4	++	+++	++	+++	++
P-glycoprotein	-	yes	-	-	yes (mild)
Substrate					
CYP2C19	-	-	+++	-	-
CYP2C9	-	-	+	-	-
СҮРЗА4	+	+++	+	-	+++
P-glycoprotein	yes	yes	-	yes	-

Dodds-Ashley et al. Clin Infect Dis. 2006;43(suppl 1):S28-S39.

Clinical Implications of Interactions

Azoles as <u>TARGETS</u> of drug interactions

• Itraconazole, voriconazole, isavuconazole

Azoles as the <u>CAUSE</u> of drug interactions

• Fluconazole, itraconazole, voriconazole, posaconazole

Heightened vigilance with rifamycins, antiepileptics, immunosuppressants, psychotropics, statins, warfarin, HIV antiretrovirals

Dodds-Ashley et al. Clin Infect Dis. 2006;43(suppl 1):S28-S39. Grasemann H. N Engl J Med. 2017;377: 2085-2088.

Children

Fluconazole

- \uparrow clearance \rightarrow half-life 20 hrs vs 30 hrs in adults
- Children require 6-12 mg/kg/d for similar adult exposure

Voriconazole

- Linear PK
- Exposure most affected by weight
- 7 mg/kg q12h comparable to 4 mg/kg q12h in adults

Echinocandins

- \circ \uparrow CL and shorter half-life compared to adults
- Caspofungin: BSA dosing
- Micafungin: CL inversely related to age (premature infants require 3-fold higher dosing than adults)

Cohen-Wollkowiez, et al. Curr Opin Infect Dis 2009; 22(6): 553-558. Watt, et al. Early Hum Dev 2011; 87 (suppl 1): S61-5.

Azole Therapeutic Drug Monitoring

	Pharmacokinetic variability	TDM range defined	Narrow therapeutic window	
Itraconazole	\checkmark	\checkmark	\checkmark	Need
Voriconazole	\checkmark	\checkmark	\checkmark	individualized
Posaconazole	\checkmark	\checkmark	?	approach
Isavuconazole	\checkmark	х	?	

Voriconazole

- TDM range: 2-6 mcg/mL (troughs)
- Troughs >6 mcg/mL associated with hallucinations, hepatotoxicity, neurotoxicity

Posaconazole

TDM range: >1 mcg/mL (troughs)

Smith et al. Ther Drug Monit. 2008 Apr;30(2):167-72. John et al. Expert Opin Drug Metab Toxicol. 2019 Sep 25. doi: 10.1080/17425255.2019.

Therapeutic Drug Monitoring

J.R. is a 27 yo woman (wt 50 kg) with CF, s/p lung transplant who is initiated on voriconazole 300 mg PO q12h x 2 doses, then 200 mg PO q12h for *Aspergillus fumigatus* on a respiratory culture. Five days after starting therapy a voriconazole trough level is checked and returns at 0.9 mg/L. The nurses have been administering the voriconazole on an empty stomach. Her LFTs are within normal range.

What are best next steps for her voriconazole therapy?

- A. Continue voriconazole at current dose
- B. Stop voriconazole and check a QTc
- C. Increase voriconazole dose to 300 mg PO q12h
- D. Decrease voriconazole dose to 150 mg PO q12h

Choosing an Antifungal

Spectrum Toxicities Ose

Candidiasis

T.R. is a 58 yo man with short gut syndrome requiring chronic TPN, DM with chronic renal insufficiency admitted with new fever, chills, hypotension. WBC 22,000. SCr 2.7 mg/dL.

Likely line infection

Blood cx +yeast x2

Which of the following would be the most appropriate empiric antifungal therapy?

- A. Fluconazole
- **B.** Voriconazole
- C. Micafungin
- D. Liposomal amphotericin B

IDSA Guidelines for Candidiasis

"Fluconazole or an echinocandin is recommended as initial therapy (AI). The Expert Panel favors an echinocandin for patients with moderately severe to severe illness or for patients who have had recent azole exposure (A-III)".

For infection due to *Candida glabrata*, an echinocandin is preferred (B-III).

For infection due to Candida parapsilosis, treatment with fluconazole is recommended (B-III).

Therapy = source control and early initiation of effective systemic antifungal therapy

Pappas, et al. CID 2009;48:503-535.

Fluconazole vs Echinocandins

IV vs PO, species, site of infection, toxicity drive treatment choice

Distribution:

Dodds-Ashley. Clin Infect Dis 2006; 43: S28–39. Riddell, et al. Clin Infect Dis 2011; 52: 648-53.

Activities of Antifungal Agents against *Candida* species

Species	Fluconazole	Itraconazole	Voriconazole	Posaconazole	Isavuconazole	Amphotericin B	Echinocandins
C. albicans	S	S	S	S	S	S	S
C. tropicalis	S	S	S	S	S	S	S
C. parapsilosis	S	S	S	S	S	S	S to R
C. glabrata	S-DD to R	S-DD to R	S-DD to R	S-DD to R	S-DD to R	S to I	S
C. krusei	R	S-DD to R	S	S	S	S to I	S
C. lusitaniae	S	S	S	S	S	S to R	S
C. auris	R	R	R	R	R	S to R	S to R

S: susceptible; S-DD: susceptible dose-dependent; I: intermediate; R: resistant

Pappas, et al. Clin Infect Dis 2009; 48: 503-35. Nett, et al. Infect Dis Clin N Am 2016; 51-83.

Pappas, et al. Nat Rev Dis Primers 2018; 4: 18026.

Candidiasis

T.R's blood culture is identified as Candida parapsilosis. He was empirically started on Micafungin, his line was removed/replaced, and he was de-escalated to fluconazole 200 mg PO daily. Five days into his fluconazole course, his QTc increased from 480 msec to 537 msec (normal QRS).

What is the best option to complete T.R.'s antifungal therapy?

- A. Continue fluconazole PO
- **B.** Change back to micafungin IV
- C. Change to isavuconazole PO
- **D.** Change to voriconazole PO

Isavuconazole Versus Caspofungin in the Treatment of Candidemia and Other Invasive Candida Infections: The ACTIVE Trial

Isavuconazole did not meet noninferiority criteria

- Overall response at EOIVT: successful outcome 60.3% in isavuconazole group vs. 71.1% in caspofungin group (adjusted difference: -10.8%; 95% CI -19.9–-1.8)
- Overall response rates at 2 weeks after EOT and mortality were similar

			12046/02042;002;002;00	r/569000 (58-6)	-
XIVY PRODUCTS. The SQL	lanesson altr	Dager Suger		, ,	ner Heritstak Tidaran in indian
රංශාව පොලාල සංසන් මගින්වට	2003685425535	NUMBER	h	<u></u>	一般有多人的的一个是
Caracteria-any	12025	(1898-71-3)	⊢ 8	4	-158-988,239
inese das associationies	派王家的法律	SPR CAR		ļ	-6646-6825-6849
2-reference	BRINE ST	和特征政	:	4	一定是于国民分明
999 (2019). 	2343 4 723)		(````\$	<u> </u>	-466-562-622
કેલ્ટી પ્રિયંતનું ન્દ્રક	关系统计 经修计	Sinte state	·	41	· 1987、1987、1987-1987-
an takena site	-12444934-	254963.2		<u>,</u>	- (20. 45 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 1
Regiõr Matrigovic.	\$55 .9633利	nexesta i	:i		-55.2 (- 27.2, 9.5)
ile biodice instagoids	Paradia	论都得到[33]的	<u>8—8</u> —		思想的现象的主义
机制作用 医心脏的	18849848248	11748543843	⊢	i.	-422498.239 837
Victor Trans	個於意識	28.626.6			-326,-362,-326
		-20	-40 -42	<u>*</u>	

ห้อยู่ แต่สินส์ ที่มีที่สาวสนอน ผู้สิน มีชื่อไม่มีหลายหลายในสมบาทในสาวสนอนสมบาทสนายากการที่สาวสนอน (เห

Invasive Aspergillosis

Risk factors

- Profound and persistent neutropenia
- Repeated cycles of prolonged neutropenia
- Corticosteroids
- GVHD
- HSCT (allo > auto)
- Hematologic malignancies
- SOT (lung > liver > heart)
 - Reoperation/retransplant
 - Rejection
 - CMV infection
 - Renal failure (especially requiring hemodialysis)
 - Aspergillus colonization

Most common species

- A. fumigatus
- A. flavus
- A. niger
- A. terreus

Invasive Aspergillosis

A.F. is a 67 yo woman with AML. She is neutropenic on broad-spectrum antimicrobials, with fever and new respiratory symptoms. A CT scan is obtained and is suggestive of invasive fungal infection with a halo-sign. Invasive aspergillosis is strongly suspected.

Based on the IDSA guidelines, which antifungal regimen should be initiated in A.F.?

- A. Liposomal amphotericin B
- **B.** Fluconazole
- C. Voriconazole
- **D.** Micafungin
- E. Voriconazole plus anidulafungin

IDSA Treatment Guidelines - IA

Primary	Alternatives
Voriconazole 6 mg/kg q12h x2, then 4 mg/k q12h	•
	12-week survival (%) 12-week complete/partial respon

	Voriconazole (144)	Amphotericin B (133)
12-week survival (%)	70.8	57.9
12-week complete/partial response (%)	52.8	31.6
Treatment duration (days)	77	10

Patterson, et al. Clin Infect Dis 2016; 63: e1-60. Herbrecht, et al. NEJM 2002; 347: 408-15.

IDSA Treatment Guidelines - IA

Primary	Alternatives	Comments
Voriconazole 6 mg/kg q12h x2, then 4 mg/kg q12h	 L-AMB 3-5 mg/kg/d, isavuconazole ABLC 5 mg/kg/d Caspofungin Micafungin Posaconazole Itraconazole 	Primary combination therapy is not routinely recommended based on lack of clinical data; addition of another agent or switch to another drug class for salvage therapy may be considered in individual patients

Patterson, et al. Clin Infect Dis 2016; 63: e1-60. Herbrecht, et al. NEJM 2002; 347: 408-15.

Slide adapted from R. Lewis; posted at www.doctorfungus.org.

Initial Combination Therapy

Study	Population	Sample size	Design	Regimen- Combo	Regimen- Monotherapy	Outcome measure	Outcome
Kontoyiannis, et al (Cancer 2005)	Heme Malignancy	112 (11 C, 101 M)	Cohort	Lipid ampho + Itra IV/PO	Lipid ampho	Favorable response (EOT)	NO BENEFIT 0% combo vs. 10% mono (p=ns)
Singh, et al (Transplantation 2006)	Solid Organ Transplant	87 (40 C, 47 M)	Cohort	Vori + Caspo	Lipid ampho	Mortality (3 mos)	NO BENEFIT 68% combo vs. 51% mono (p=0.117) • Beneficial in subset with renal failure or A. fumigatus infection
Upton, et al (CID 2007)	HSCT	405 (33 C, 372 M)	Cohort	Vori + Caspo (33)	Voriconazole (58) (Ampho or Lipid Ampho)	Mortality	NO BENEFIT Unadj HR 2.3 (0.6-9.4; p=0.23)
Raad, et al (Leukemia 2008)	Heme Malignancy	143 (38 C, 105 M)	Cohort	Lipid ampho (≥ 7.5 mg/kg/d) + caspo (38)	Posaconazole (53)	Favorable Response (EOT or 3 mos) Mortality (3 mos)	BENEFIT 11% combo vs. 40% mono (p=0.002) 74% combo vs. 43% mono (p=0.004)
Caillot, et al (Cancer 2007)	Heme Malignancy	30 (15 C, 15 M)	Open, RCT	Lipid ampho (3 mg/kg/d) + caspo	Lipid ampho (10 mg/kg/d)	Favorable response (EOT)	BENEFIT 67% combo vs. 27% mono (p=0.028)

Combination Vori/Anidulafungin vs. Vori Monotherapy – Primary Therapy

Prospective, randomized double-blind

- Allo-HSCT/heme malignancy patients
- 142 monotherapy vs. 135 combination
- Combination therapy x 2-4 weeks, at 2 weeks could switch to monotherapy

Primary endpoint: survival at 6 weeks

Outcome	Voriconazole monotherapy	Combination therapy	p value	95% CI
Death (week 6), n (%)	39 (27.5)	26 (19.3)	0.0868	-19, 1.5
Secondary endpoints				
Death (week 12), n (%)	55 (39.4)	39 (29.3)	0.0766	-21.4, 1.0
Death due to IA (week 6), n (%)	33 (23.9)	23 (17.3)	0.2058	-15.9, 3.4
Global response – success, n (%)	61 (43)	44 (32.6)	0.0782	-21.6, 1.1
Complete response	17 (12)	8 (5.9)		
Partial response	44 (31)	36 (26.7)		
Stable response	19 (13.4)	26 (19.3)		
Fallure	7 (4.9)	8 (5.9)		
Death, probable IA, n (%) ²	39 (27.9)	24 (18.2)	0.0504	-20.1, 0.3
Death, probable IA - GM only ¹	30 (27.3)	17 (15.7)	0.0372	-22.7, -0.

'p values based on two-sided Z test for the difference in response rates, adjusted for randomisation strata, using the normal approximation to the binomial distribution; "Calculated from 272 patients with probable IA; "Calculated from 216 patients with probable IA based on positive GM only

Cl, confidence interval; EM, galactomannan; IA, invasive aspergillosis

Take home → combination therapy may be of benefit in patients with clinical symptoms *plus* galactomannan positive AND combination therapy may only be necessary for 2 weeks

Isavuconazole vs. Voriconazole for IA

Primary treatment

Primary endpoint: no difference in all-cause mortality at day 42 in ITT population

 19% in isavuconazole groups vs. 20% in voriconazole group (adjusted treatment difference –1.0%, 95% CI –7.8 to 5.7)

Less treatment emergent adverse events in isavuconazole group

 Lower frequency of hepatobiliary disorders, eye disorders, and skin/subcutaneous tissue disorders

No altered/TDM dosing of voriconazole

	Isavuconazole	Voriconazole	Adjusted treatment difference (95% CI)*
DRC-assessed response (mITT p	opulation)		
Overall response at EOT§	143	129	
Success	50 (35%)	47 (36%)	1-6% (-9-3 to 12-6)
Complete	17 (12%)	13 (10%)	1
Partial	33 (23%)	34 (26%)	
Failure	93 (65%)	82 (64%)	-
Stable	42 (29%)	33 (26%)	*
Progression	51 (36%)	49 (38%)	
Clinical response at EOTS	85/137 (62%)	73/121 (60%)	0-4% (-10-6 to 11-5)
Mycological response at EOT§	54/143 (38%)	53/129 (41%)	3·8% (-7·4 to 15·1)
Radiological response at EOT§	41/141 (29%)	42/127 (33%)	5.7% (-4.9 to 16-3)

Posaconazole vs. Voriconazole for IA

Primary treatment

Primary endpoint: no difference in all-cause mortality at day 42 in ITT population

• 15% for posaconazole group vs. 21% for voriconazole group (treatment difference –5.3%, 95% Cl –11.6 to 1.0)

Fewer drug-related adverse events with posaconazole

• Eye disorders, psychiatric disorders

More hypokalemia and decreased appetite with Posaconazole

No altered/TDM dosing of voriconazole

	Posaconazole group	Voricinazale griup	Treatment difference (99% CI)*	p value
All-cause mortality				
ITT population				
Day 42 all-cause mortality?	44/288 (19%)	59/287 (21%)	-53% (-11-61014)	<0.00015
Day 84 all-cause mortality	81/288 (28%)	86/287 (31%)	-2.5% (-1.9.10.4.9)	NA
FAS population				
Day 42 all cause mortalityf	31/163(196)	32/171 (1981	0 7% (8 2 to 8 8)	NA
Day 8d all-cause modelity	56(163 (34%)	53/1/1 (31%)	31% (-5410131)	NA

Zygomycetes

Manifestations: rhinocerebral, pulmonary, gastrointestinal, cutaneous, and disseminated

Most common species

- Rhizopus
- Rhizomucor
- Mucor
- Absidia

Aggressive, fast growing, non-septate molds

• Tissue necrosis common

Risk factors

- Hematologic malignancy
- Prolonged and profound neutropenia
- Poorly controlled diabetes mellitus
- Prolonged corticosteroid use
- Iron overload
- Malnutrition
- Illicit intravenous drug use
- Premature birth

Mortality 44% in DM, 35% in patients with no underlying conditions, and 66% in patients with malignancies

96% mortality with disseminated infections

Petrikkos, et al. Clin Infect Dis 2012:54:S23-34.

Zygomycetes Antifungal Therapy

Liposomal amphotericin B (5-10 mg/kg/d)

- Improved survival rate compared to conventional amphotericin B (67% vs. 39%)
- Liposomal > ABLC
- Limited by nephrotoxicity

Isavuconazole

- Compared to historical amphotericin B data
- Day-42 crude all-cause mortality 33% of 21 isavuconazole cases similar to 39% of 33 amphotericin B-treated matched controls
- Limited by small sample size, external control matching

Posaconazole

- Not considered first-line
 - Posaconazole relatively ineffective in pre-clinical animal models
 - Breakthroughs during posaconazole prophylaxis
- Limited to salvage therapy (~60% response rate)

Spellberg, et al. Curr Infect Dis Rep. 2010; 12(6): 423–429. Dannaoui, et al. J Antimicrob Chemother 2003; 51:45–52. Marty, et al. Lancet Infect Dis 2016;16(7):828-837. van Burik, et al. Clin Infect Dis 2006; 42:e61–e65.

Cryptococcus neoformans

Encapsulated yeast

- Grows naturally in environment
- Found in pigeons nests, droppings

C. neoformans var neoformans

- Immunocompromised
- Mortality rate 12-28% overall

Pulmonary and disseminated/CNS diseases most common

Cryptococcus neoformans

Amphotericin B = main therapy

Combination with flucytosine

 Combination most potent fungicidal regimen with faster CSF sterilization and fewer relapses, lower attributable mortality

Fluconazole

- Substitute for flucytosine
- Fungistatic effect on *Cryptococcus* sp.
- Associated with increased mortality
- Monotherapy in consolidation and maintenance therapy

Maziarz, et al. Infect Dis Clin North Am 2016; 30(1): 179–206. Day, et al. N Engl J Med 2013; 368: 1291.

Flucytosine

Synthesized in 1957 as an anti-tumor agent

Active against *Candida* sp and *Cryptococcus* sp.

Mechanism: converted to 5-FU which causes RNA miscoding and inhibits DNA synthesis

Significant bone marrow suppression

- Prolonged high serum levels >100 mg/L
- 75-100 mg/kg/d
- Renal elimination, often used with ampho B
- Check 2-hr post dose level: goal 30-80 mg/L

Antifungal Stewardship

Delays in diagnosis and appropriate therapy \rightarrow poorer outcomes

Increased antifungal utilization especially ICUs and transplant centers

Emerging antifungal resistance

Opportunities

- Diagnostics
- De-escalation
- Limiting combination therapy
- Therapeutic drug monitoring
- Drug-drug interaction management
- Guidelines / Education
- IV to PO conversion

Hamdy, et al. Virulence 2017; 8(6): 658–672. Johnson, et al. J Infect Dis 2020;222(Suppl 3):S175-S198.

Summary

Appropriately assess risk factors for fungal disease in at-risk populations

Choice of antifungal agents based on likely pathogens, pharmacokinetics, toxicity and drug interaction potential

Optimize dosing based on therapeutic drug monitoring

Explore opportunities for antifungal stewardship

Which of the following azole antifungals is not associated with QTcprolongation?

- A. Fluconazole
- B. Voriconazole
- C. Posaconazole
- D. Isavuconazole

Which of the following infusion-related adverse effects to you most expect to see while monitoring a patient receiving intravenous amphotericin B?

- A. Anemia
- B. Fever and chills
- C. Hypokalemia
- D. Diarrhea

Which of the following antifungals causes clinically significant drug-drug interactions through inhibition of CYP2C9 or CYP2C19?

- A. Micafungin
- B. Isavuconazole
- C. Voriconazole
- D. Posaconazole

Which of the following *Candida* species is notable for its resistance to azole antifungals, persistence in the environment, and association with healthcare-associated infections?

- A. Candida albicans
- B. Candida lusitaniae
- C. Candida glabrata
- D. Candida auris

Minimal drug interactions and side effects with limited clinical utility in genitourinary and central nervous system fungal infections best characterizes which of the following antifungal classes?

- A. Azoles
- B. Polyenes
- C. Echinocandins
- D. Allylamines

Complexities of Antifungal Therapy Made Simple

Christine Kubin, PharmD, BCPS-AQID, BCIDP Clinical Pharmacy Lead, Infectious Diseases Department of Pharmacy and Division of Infectious Diseases NewYork-Presbyterian Hospital Columbia University Irving Medical Center

-NewYork-Presbyterian

COLUMNAL CONTRACTOR