KAHOOT! ASP EDITION

AN INTERACTIVE GAME TO TEST YOUR KNOWLEDGE ON ANTIMICROBIAL STEWARDSHIP

Yumi Lee, PharmD, BCIDP, AAHIVP
Associate Clinical Professor
St. John's University
College of Pharmacy and Health Sciences
Queens, NY

Julia Sessa, PharmD, BCIDP Clinical Infectious Diseases Pharmacist St. Joseph's Health Syracuse, NY

NYSCHP Virtual Annual Assembly 2021

Both presenters have no conflicts of interest to report

At the completion of this activity, pharmacists will be able to:

- 1. Describe the Center of Disease Control and Prevention (CDC)'s core elements of antimicrobial stewardship
- Identify antimicrobial stewardship strategies that will optimize and elevate clinical practice
- 3. Discuss new antimicrobial agents and their role in clinical practice

At the completion of this activity, pharmacy technicians will be able to:

- Define The Joint Commission's mandates on antimicrobial stewardship
- Describe different antimicrobial stewardship strategies used in clinical practice
- 3. Identify antimicrobial agents used in clinical practice

The Joint Commission implemented an antimicrobial stewardship standard for which of the following settings:

- A. Acute care hospital
- B. Nursing home
- C. Ambulatory care
- D. All of the above

Medication Management Standard 09.01.01

- Effective January 1, 2017
- Applicable to hospitals, critical access hospitals, and nursing homes

Medication Management Standard 09.01.03

- Effective January 1, 2020
- Applicable to ambulatory care centers that routinely prescribe antibiotics

Which of the following is <u>NOT</u> a CDC Core Element of Hospital Antibiotic Stewardship Programs?

- A. Tracking and reporting
- B. Hospital leadership commitment
- C. Pharmacy expertise
- D. Microbiology lab commitment

CDC Core Elements of Hospital Antibiotic Stewardship Programs

Hospital Leadership Commitment

Dedicate necessary human, financial, and information technology resources.

Accountability

Appoint a leader or co-leaders, such as a physician and pharmacist, responsible for program management and outcomes.

Pharmacy Expertise (previously "Drug Expertise"):

Appoint a pharmacist, ideally as the co-leader of the stewardship program, to help lead implementation efforts to improve antibiotic use.

Action

Implement interventions, such as prospective audit and feedback or preauthorization, to improve antibiotic use.

Tracking

Monitor antibiotic prescribing, impact of interventions, and other important outcomes, like *C. difficile* infections and resistance patterns.

Reporting

Regularly report information on antibiotic use and resistance to prescribers, pharmacists, nurses, and hospital leadership.

Education

Educate prescribers, pharmacists, nurses, and patients about adverse reactions from antibiotics, antibiotic resistance, and optimal prescribing.

CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2019.

Which of the following is an example of prospective audit and feedback?

- A. Calling a prescriber because they ordered a restricted antibiotic
- B. A prescriber evaluating cefepime for appropriateness after 3 days of therapy
- C. Reviewing a patient on piperacillin-tazobactam for sepsis after 72 hours
- D. Renally adjusting ertapenem on a patient recovering from AKI

Prospective Audit and Feedback

- Reviewed at 48-72 hours by a member of the antimicrobial stewardship team and feedback is provided to the prescriber
 - Methods of delivery: phone, written chart notes, face-to-face ("hand-shake stewardship")

Benefits	Challenges
Prescriber autonomy is maintained	Adherence is voluntary
More clinical data is available for the stewardship team to make recommendations	Providers reluctant to change if a patient is improving on current therapy
Adresses de-escalation of broad spectrum antibiotics and duration of therapy	Identification of patients for interventions requires IT support

CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2019.

Categories of Stewardship Interventions

Broad	Antibiotic time-out Prior authorization Prospective audit and feedback
Pharmacy-Driven	Automatic IV to PO conversion Dose adjustments Dose optimizations Duplication of therapy alerts Automatic stop dates Detection and prevention of antibiotic drug interactions
Infection and Syndrome Specific	Development of clinical pathways based on national guidelines and institution specific susceptibility patterns in the electronic medical record to guide empiric antibiotic selection (UTI, bloodstream infection, etc.)

CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2014.

Calculate the days of therapy (DOT) based on the following medication administration record:

A. 3 B. 5

C. 9

D. 15

March 18	March 19	March 20	March 21	March 22
Vancomycin	Vancomycin	Vancomycin		
0600	0600	0600		
1800	1800			
Cefepime	Cefepime	Cefepime		
0600	0600	0600		
1400	1400			
2000	2000			
		Ceftriaxone	Ceftriaxone	Ceftriaxone
		1000	1000	1000

Days of Therapy (DOT)

- Number of days that a patient receives an antibiotic
- Any dose of an antibiotic that is received on a calendar day represents 1 DOT
- If a patient is on multiple antibiotics the DOT will be the sum of DOT for each antibiotic
- DOT is standardized to 1000 patient days (DOT/1000 patient days) to allow comparison between hospitals of different sizes

CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2019.

Days of Therapy (DOT)

March 18	March 19	March 20	March 21	March 22
Vancomycin	Vancomycin	Vancomycin		
0600	0600	0600		
1800	1800			
Cefepime	Cefepime	Cefepime		
0600	0600	0600		
1400	1400			
2000	2000			
		Ceftriaxone	Ceftriaxone	Ceftriaxone
		1000	1000	1000

3 Vancomycin DOT + 3 Cefepime DOT + 3 Ceftriaxone DOT = 9 DOT

Days of Therapy (DOT)

Advantages	Disadvantages
If normalized to patient days, can be used to compare antibiotic usage between institutions	Favors broad spectrum monotherapy over narrow spectrum combination therapy Example: Piperacillin-tazobactam x 7 days = 7 DOTs vs ceftriaxone + metronidazole x 7 days = 14 DOTs
Not affected by dosing	DOT for patients that receive a dosing interval > 24 hours are not accurately reported (antibiotic only counted on days it is administered)

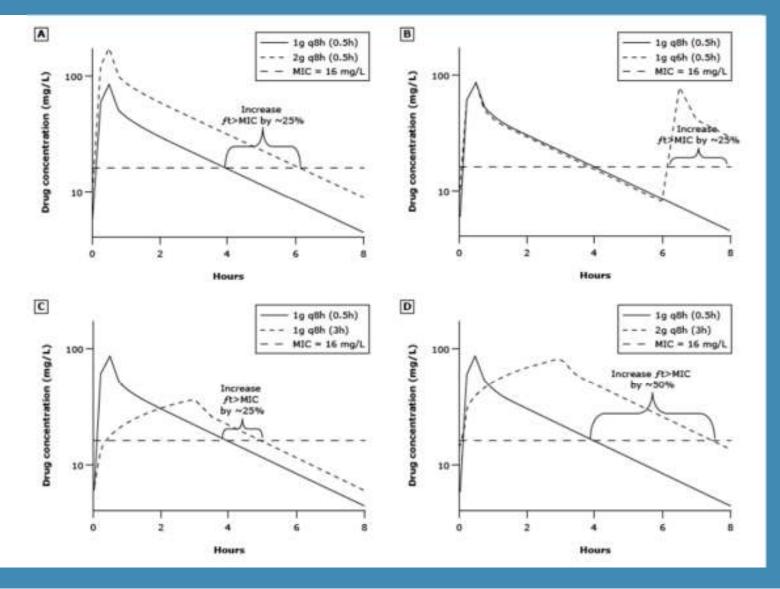
CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2019.

National Healthcare Safety Network (NHSN) Antimicrobial Use and Resistance (AUR) Module

- Managed by the Centers for Disease Control and Prevention
- Mechanism for facilities to report and analyze antimicrobial usage as part of antimicrobial stewardship efforts
- Provides facilities with data that can be used for inter-facility comparisons
- Evaluation of antimicrobial resistance

Prolonged infusion effectively attain the pharmacodynamic efficacy target for which class of antibiotics:

- A. Beta-lactams
- B. Aminoglycosides
- C. Fluoroquinolones
- D. Glycopeptides


Prolonged Infusion of Beta-Lactams

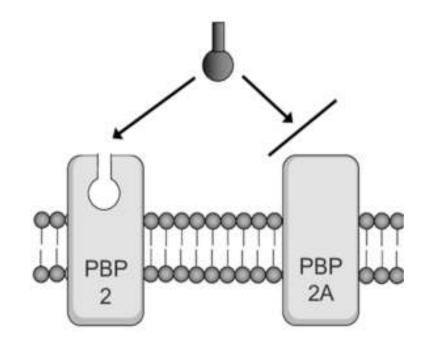
- More effective than intermittent infusion in gram-negative infections
- Beneficial in infections due to pathogens with higher MICs
- Achieves adequate serum levels of antibiotics in critically ill or young patients altered pharmacokinetics
- Safe, reduced selection for drug resistance, cost benefit

Target attainments of %fT>MIC for beta-lactams and gram-negative pathogens						
Penicillins	50%					
Cephalosporins	60-70%					
Carbapenems	40%					

%fT>MIC: % of the dosing interval that the concentration of free drug remains about the MIC of the pathogen.

Effects of dose increase and prolonged infusion on beta-lactam exposure

2021 UpToDate, Inc. Reproduced from: MacVane SH, Kuti JL, Nicolau DP. Int J Antimicrob Agents. 2014 Feb;43(2):105-13.


As the antimicrobial stewardship pharmacist, you receive a rapid diagnostic test alert from the microbiology laboratory for a positive blood culture. It is reported as *Staphylococcus aureus*, *mecA* gene <u>not</u> detected. The patient is on vancomycin and piperacillin-tazobactam.

Which of the following would be the most appropriate recommendation in this scenario?

- A. Discontinue vancomycin, continue piperacillin-tazobactam
- B. Discontinue vancomycin and piperacillin-tazobactam, start oxacillin
- C. Discontinue piperacillin-tazobactam, continue vancomycin
- D. Discontinue piperacillin-tazobactam, continue vancomycin, start oxacillin

Staphylococcus aureus: mecA gene

- Resistance mechanism: Target site modification
- mecA gene encodes penicillinbinding protein (PBP) 2 to become PBP2a so betalactams can no longer bindExcept ceftaroline

Rapid Diagnostics Tests (RDT)

Timbrook, et al (2017)

- N = 5920 patients with bacteremia
- RDT vs Conventional Methods
 - Mortality benefit: OR 0.66 (95% CI: 0.54-0.80)
 - Number needed to treat: 20
 - Presence of Antimicrobial Stewardship
 - Mortality benefit: OR 0.64 (95% CI: 0.51-0.79)
 - Absence of Antimicrobial Stewardship
 - Mortality benefit: OR 0.72 (95% CI: 0.46-1.12)

Timbrook TT et al. Clin Infect Dis 2017;64:15-23.

Table 1. Antimicrobial stewardship considerations for optimal utility of FDA-approved RDTs for blood culture identification.

Technology type	Example systems (manufacturer)	Resistance detection	ASP considerations
PNA-RSH	Accelerate Pheno TM (Accelerate Diagnostics)	MPSA and macrolide- lincosamide-streptogramin B phenotypically reported	 First assay with rapid phenotypic AST* with potential utility among patients that would benefit from rapid PK/PD dose adjustments (e.g., critically ill with augmented renal clearance)
			 Unreliable when testing MIC of organism with multiple morphologies, or polymicrobial infections
			Clinical outcomes studies limited
	PNA-FISH (AdvanDx)	None	 Combined with ASP, previously associated with reduction in LOS among CoNS-positive cultures, and reduced time to effective therapy with enterococcal bacterenia
			May have limited utility because of limited target detection
PCR	Xpert MRSA/SA BC (Cepheld)	SCCmec, mecA	· Allows for prompt differentiation between MRSA and MSSA, expediting time to preferre
	StaphSR (GeneOhm)	mecA	treatment, and reducing mortality
mPCR	FilmArray® BCID (BioFire	mecA, vonA/B, KPC	. Comprehensive number of targets detected (gram-positive, gram-negative, and yeast)
Diagnostics)	Diagnostics)		 Multiple probes allow for identification of multiple organisms demonstrating utility in polymicrobial infections that may be missed by other technologies
			Limited detection of genotypic resistance markers for gram-negative organisms
MALDI-TOF	MALDI-TOF (bioMérieux and	None	Ability to detect a vast array of bacterial and fungal microbes
	Brucker)		 May be useful in populations with high number of uncommon infections (e.g., facilities with large immunocompromised population, transplant centers)
			 Unable to detect resistance mechanisms or provide susceptibility reports
Nanoparticle probe technology	Verigene BC-GP (Nanosphere)	mecA, vanA/B	 Gram-negative panel has the most comprehensive genotypic resistance test capability commercially available, and can be used to streamline therapy for resistant (i.e., ESBL producing) organisms faster
	Verigene BC-GN (Nanosphere)	KPC, NDM, CTX-M, VIM, IMP, OXA	Unreliable for detection in polymicrobial bacteremia
NMR	T2 Candida®, T2Bacteria®	None	 Can detect the presence of organisms from direct blood specimen without requiring p isolation substantially expediting identification
			 Because of low limit of detection can detect positive blood cultures missed by standard testing however, significant clinical threshold transient vs true bacteremia is unclear
			De-escalation or discontinuation possible with negative result

Which of the following dosing/monitoring methods is recommended for vancomycin?

A. Trough 15-20

B. Trough <2

C. AUC:MIC >800

D. AUC:MIC 400-600

Therapeutic monitoring of vancomycin for serious methicillinresistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists

Published , 3/19/2020

American Journal of Health-System Pharmacy, zxaa036, https://cloi.org/10.1093/ajhp/zxaa036 Published: 19 March 2020

To view the Executive Summary as published in Clinical Infectious Diseases, click here.

Michael J Rybak, Jennifer Le, Thomas P Lodise, Donald P Levine, John S Bradley, Catherine Liu, Bruce A Mueller, Manjunath P Pai, Annie Wong-Beringer, John C Rotschafer, Keith A Rodvold, Holly D Maples, Benjamin M Lomaestro

2020 Guideline Updates

- Target AUC:MIC 400-600
- Actual body weight
- Loading dose:
 - Non-obese: 20-35 mg/kg
 - Obese: 20-25 mg/kg
 - Max 3,000 mg
- Maintenance dose:
 - Non-obese: 15-20 mg/kg
 Q8-12H
 - Obese: use population kinetics (max 4,500 mg/day)
- Pediatric, neonate, and dialysis recommendations

Benefits of AUC:MIC Dosing Method

- Vancomycin troughs of 15-20 mg/mL associated with increased risk of nephrotoxicity
- AUC:MIC ratio ~400 related to increased survival rates in S. αureus bacteremia

Moise-Broder equation	 Daily dose of vancomycin divided by a CrCl-based estimate of vancomycin clearance Requires no serum concentrations Can underestimate AUC
Sawchuk-Zaske method (Trapezoidal rule)	 Uses 2-level PK (assumes 1 compartment model) Requires 2 steady state levels, collected during same interval Home-grown dosing calculators, EMR-based calculators, commercially available calculators
Bayesian model	 Uses population PK data Requires at least 1 serum concentration Most accurate AUC predictions Requires purchased software

A 75-year-old male presents to the ED with complaints of left lower extremity pain and erythema. He has a chronic foley and the ED physician collects a urinalysis and urine culture. The urinalysis has 25 WBCs and 10 squamous cells. The urine culture grows *Proteus mirabilis* and *Enterococcus faecalis*.

Which of the following is the MOST appropriate recommendation?

- A. Start antibiotics for both cellulitis and UTI
- B. Start antibiotics for cellulitis but not UTI
- C. Start antibiotics for UTI but not cellulitis
- D. No antibiotics are indicated at this time

Asymptomatic Bacteriuria

- Pyuria may be present in asymptomatic bacteriuria
 - 50-100% patients with long term catheters
 - The longer the catheter is in situ, the higher likelihood of colonization
- Urinalysis and urine cultures <u>do not rule in</u> the diagnosis of a UTI, they can only <u>rule out</u> the diagnosis when negative
 - In patients age > 65 years:
 - Positive Predictive Value 37%
 - Negative Predicted Value 92% (100% in LTCF residents)
- Initiation of antibiotics based on a urinalysis, results in a misdiagnosis of a UTI in 20-40% of patients.

Remember: Always assess for urinary symptoms!

CID 2005;40:643-654; Juthani-Mehta, Infect Control Hosp Epidemiology 2007;28:889-891

Stewardship Initiative

- Elimination of reflex urine cultures for abnormal urinalysis
 - Allows for the physician to assess the patient for symptoms and request urine culture only if indicated

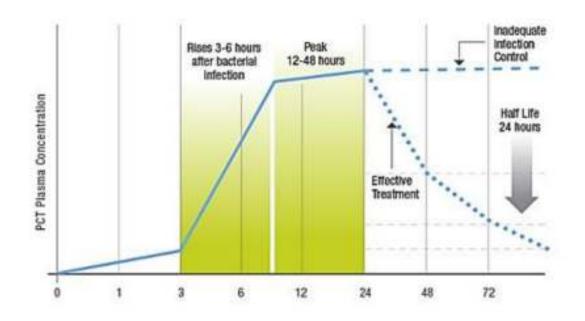
Date Range	Urine Cultures	Urine Cultures/Month
PRE: 1/1/2016 – 4/30/2016	3,613 (ED = 2,396)	903
POST: 1/1/2017 – 12/31/2017	7,032 (ED = 4,976)	586

Urinalysis with Immediate Urine Culture

D Urinalysis with Urine Culture Hold Tube

Am J Infect Control. 2016 Dec 1;44(12):1750-1751. J Clin Microbio. 2016 Feb;54(2):254-8.

A 55-year-old male is admitted with shortness of breath. He is requiring 4L O2 and is afebrile. While labs are pending, ceftriaxone, azithromycin and IV furosemide are initiated as both community acquired pneumonia (CAP) and acute exacerbation of heart failure are in the differential diagnosis. His labs return as follow:

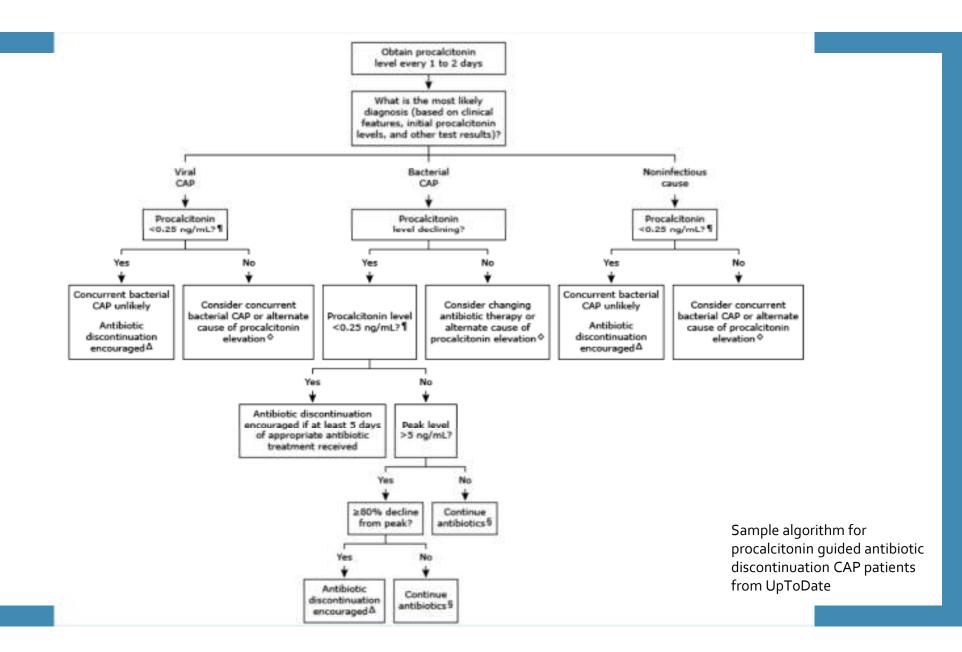

WBC = 10,000	BNP = 2750	Procalcitonin = 0.15
--------------	------------	----------------------

Which of the following is the MOST appropriate recommendation?

- A. Continue antibiotics for CAP.
- B. Discontinue antibiotics. The patient does not have CAP.
- c. Discontinue azithromycin. The patient does not have atypical pneumonia.
- D. Add vancomycin for MRSA coverage.

What is Procalcitonin?

- 116 amino acid precursor to calcitonin, produced in most cells and tissues
- Biomarker specific for systemic bacterial infections
- Rapidly released by parenchymal cells in response to bacterial toxins
- Undetectable in healthy persons


Brunkhorst FM, et, al. Intensive Care Med. 1998 Aug;24(8):888-9.

Procalcitonin in Antimicrobial Stewardship

- Guides early discontinuation of antibiotics
- Monitor response to antibiotic therapy
- Differentiation of bacterial and viral infections
- Diagnosis, risk stratification, and monitoring of sepsis and septic shock
- Not to be used as sole marker for antibiotic initiation

Conditions that may falsely elevate procalcitonin levels

- Major stressors: severe trauma, cardiac arrest or circulatory shock, surgery, burns, pancreatitis, and intracranial hemorrhage
- Immediate postnatal period
- After receipt of immunomodulatory agents (T-cell antibodies, alemtuzumab, IL-2)
- Certain neoplasms
- Newborns <48-72 hours
- Malaria and some fungal infections
- Significantly compromised renal function (ESRD, hemodialysis)

A 45-year-old female patient presents from her outpatient orthopedic office due to concern of a septic knee joint. An aspiration was performed and the culture is positive for methicillin-susceptible *Staphylococcus aureus*. The patient has a documented penicillin allergy of hives which occurred 5 years ago. Which of the following antibiotics is MOST appropriate to recommend at this point in time?

- A. Vancomycin
- B. Oxacillin
- C. Cefazolin
- D. Tigecycline

Cross-Reactivity of Penicillins to Cephalosporins

Picard M, et al (2019)

- N = 1269 patients with proven IgE- or T-cell—mediated penicillin allergy
- Conclusion: R1 side chain similarity correlates most with cross-reactivity

16% cross-reactivity

2% cross-reactivity

Picard M, Robitaille G, Karam F, et al. Cross-Reactivity to Cephalosporins and Carbapenems in Penicillin-Allergic Patients: Two Systematic Reviews and Meta-Analyses. *J Allergy Clin Immunol Pract*. 2019 Nov - Dec;7(8):2722-2729

(x) assumed cross reactive (R1 or R2) similar or same	Penicillin	Amoxicillin	Ampicillin	Nafcillin	Piperadilin	Cephalexin	Cefazolin	Cefacior	Cefuroxime	Cefoxitin	Ceftriaxone	Cefotaxime	Ceftazidim e	Cefdinir	Cefixime	Cefepime	Ceftaroline	Ceftolozan e	Cefiderocol	Aztreonam
Penicillin		ж	×	х	×	R1		R1		Rı										
Amoxicillin	×		Rı	×	х	R1		Ra												
Ampicillin	×	R ₁		×	x	Rı		R1												
Nafcillin	×	ж	х		×	×														
Piperacillin	×	х	×	х		Rı		R1												
Cephalexin	Rı	Ra	R1	х	Rı			R1												
Cefazolin																				
Cefaclor	R1	Rı	R1	×	Rı	Rı						-			-					
Cefuroxime							1			R2	Rı	R2				Ra.				
Cefoxitin	Rı								R2			R2								
Ceftriaxone									Ra.			Rs				Rs	Rı	Rı		
Cefotaxime									R ₂	R2	Rı					Ra	Rı	Rı		
Ceftazidime				\vdash	-				10								Rı	Rı	Ra	R
Cefdinir					-	3	1 9		1	12	8				R2					
Cefixime					, a					/-				R ₂		- 5		Rı		
Cefepime							- 8		R1		Rı	Rı					Rı	Rı	R2	
Ceftaroline										.,	Rı	Rı	Rı			Rı				
Ceftolozane											Rı	Rı	R1		R1	Rı			Ų.	R
Cefiderocol													Rı			R2				R
Aztreonam					1			11.18		1	4		Rı		1	1	- 8	R1	R ₁	

Pharmacist Lead Allergy Assessment

Study	Results
Tripp et al; 1993	28% (169/606) of documented drug allergies were removed after a pharmacist-conducted patient allergy history
Sigona et al; 2016	34.3% (11/32) patients had discrepancy between EMR and reported allergy and history obtained after interview
Harig et al; 2018	61% (123/202) patients required a change in allergy history after questionnaire and interview.

Tripp et al Am J Hosp Pharm 1993;50;95-98; Sigona et al A Am Pharm Assoc 2016;56(6)665-669; Harig A P&T 2018;43(11):676

An 80- year-old female is started on ceftriaxone, vancomycin, and doxycycline for severe community acquired pneumonia. Her MRSA nasal screen result is negative. Which of the following is the MOST appropriate recommendation?

- A. Discontinue vancomycin and doxycycline
- **B.** Discontinue vancomycin
- C. Continue ceftriaxone, vancomycin, and doxycycline
- D. Discontinue all antibiotics

MAJOR ARTICLE

The Clinical Utility of Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Screening to Rule Out MRSA Pneumonia: A Diagnostic Meta-analysis With

Antimicrobial Stewardship Implications

• Included 22 studies (n=5,163)

• 10% prevalence

Diane M. Parente, ¹ Cheston B. Cunha, ^{2,3} Eleftherios Mylonakis, ^{2,3} and Tristan T. Timbrook⁴

Department of Pharmacy, The Miniam Hospital, Infectious Disease Division, Rhode Island Hospital and The Miniam Hospital, and Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, and Department of Pharmacy, University of Utah Health Care, Salt Lake City

	Pooled	CAP/HCAP	VAP
Sensitivity	70.9%	85%	40.3%
Specificity	90.3%	92.1%	93.7%
PPV	44.8%	56.8%	35.7%
NPV	96.5%	98.1%	94.8%

Cefiderocol is a novel antibiotic used to treat:

- A. Multidrug-resistant Pseudomonas aeruginosa
- B. Methicillin-resistant *Staphylococcus aureus*
- C. Non-tuberculosis mycobacterium
- D. Vancomycin-resistant *Enterococcus faecium*

Cefiderocol (Fetroja)

Mechanism of action	Inhibits bacterial cell wall synthesis	
Dose	2g IV Q8H administered over 3 hours (renal dose adjustment required)	
Spectrum of activity	Ambler class A, B, C, or D beta-lactamases producing bacteria Acinetobacter baumannii Pseudomonas aeruginosa Stenotrophomonas maltophilia	
Adverse effects	N/V/D, increased AST/ALT	

Meropenem-vaborbactam has activity against which of the following bacteria:

- A. Carbapenem-resistant Pseudomonas aeruginosa
- B. Carbapenem-resistant Acinetobacter baumannii
- C. Stenotrophomonas maltophilia
- D. Carbapenem-resistant Enterobacterales

Meropenem-vaborbactam (Vabomere)

Mechanism of action	Inhibits bacterial cell wall synthesis
Dose	4g IV Q8H administered over 3 hours (renal dose adjustment required)
Spectrum of activity	Ambler class A and C beta-lactamases producing bacteria - Lower MICs have been observed compared to ceftazidime-avibactam against carbapenem-resistant Enterobacterales Pseudomonas aeruginosa - No enhanced activity against meropenem-resistant strains
Adverse effects	N/V/D, CNS effects

Petty LA, et al. Infect Drug Resist. 2018 Sep 12;11:1461-1472.; Novelli A, et al. Expert Rev Anti Infect Ther. 2020 May 3:1-13

Which of the following antibiotic is MOST likely to have activity against carbapenem-resistant *Acinetobacter* baumannii:

- A. Ceftazidime-avibactam
- B. Ceftolozane-tazobactam
- C. Eravacycline
- D. Imipenem-cilastatin-relebactam

Eravacycline (Xerava)

Mechanism of action	Inhibits protein synthesis	
Dose	1mg/kg IV Q12H administered over 60 minutes	
Spectrum of activity	Methicillin-resistant staphylococcus aureus Vancomycin-resistant Enterococcus species Ambler class A, B, C, or D beta-lactamases producing bacteria Acinetobacter baumannii Stenotrophomonas maltophilia	
Adverse effects	N/V (less than tigecycline), infusion site reactions	

Alosaimy S. Pharmacotherapy. 2020 Mar;40(3):221-238; Zhanel GG, et al. Drugs. 2016 Apr;76(5):567-88.

KAHOOT! ASP EDITION

AN INTERACTIVE GAME TO TEST YOUR KNOWLEDGE ON ANTIMICROBIAL STEWARDSHIP

Yumi Lee, PharmD, BCIDP, AAHIVP
Associate Clinical Professor
St. John's University
College of Pharmacy and Health Sciences
Queens, NY

Julia Sessa, PharmD, BCIDP Clinical Infectious Diseases Pharmacist St. Joseph's Health Syracuse, NY

NYSCHP Virtual Annual Assembly 2021