
Pediatric Potpourri Recent Updates in Pediatric Pharmacotherapy

Nicholas M. Fusco, PharmD, BCPS, BCPPS

Clinical Associate Professor

University at Buffalo School of Pharmacy & Pharmaceutical Sciences, Buffalo, NY

None to disclose

Objectives

- > At the completion of this activity, **pharmacists** will be able to:
 - Calculate age appropriate doses of drugs using basic principles of developmental pharmacology
 - Apply recent data related to medication adverse events in pediatrics to specific clinical scenarios
 - > Identify gaps that exist in data related to antimicrobial stewardship in hospitalized children
- > At the completion of this activity, **pharmacy technicians** will be able to:
 - List three fundamental differences between pediatric and adult patients regarding drug therapy
 - > Describe emerging concerns regarding proton pump inhibitors in infants
 - > Recognize infections in children where short durations of treatment are appropriate

BASICS OF AGE-APPROPRIATE DOSING

CONSIDERATION OF PATIENT AND DRUG-SPECIFIC VARIABLES

Caring for Hospitalized Children

71% of all pediatric hospitalizations in the United States occurred at general hospitals that treat both adult and pediatric patients (Leyenaar, 2016)

- Wide variability of pediatric education within required curricula and postgraduate training (Prescott, 2014)
- Basic knowledge of the pediatric population and pharmacotherapy required to provide safe, quality pharmaceutical care for children
 - Core competencies have been suggested by pediatric pharmacy organizations (Boucher, 2015)

Dosing Considerations

Determining the appropriate dose of a medication requires an assessment of the patient's age, weight, height, disease state and clinical status

- Most medications require weight-based dosing, using the patient's actual body weight in kilograms (kg)
 - ▶ Body Surface Area (BSA) (m^2) = $\sqrt{(height [cm] \times weight [kg]/3,600)}$
 - > Age (e.g. montelukast) or weight (e.g. oseltamivir) categories
- Drug information can be limited due to the lack of double-blind, randomized, controlled trials for dosing
 - Results from less rigorous studies are used for dosing information

Assessment of Age

Abbreviation	Age Range
Neonate	Birth to 28 days of life
Infant	1 month (28 days) to 12 months of age
Child	1 to 11 years of age
Adolescent	12 to 18 years of age
Adult	>18 years of age

- FDA: pediatrics = birth to 16 years of age
 - Infants = 1 month to 2 years of age
 - Children = 2 to 12 years of age
 - Adolescents = 12 to 16 years of age

AAP: pediatrics = birth to 21 years of age

Assessment of Weight

- Ideal Body Weight (IBW)
 - IBW (kg) = (height² [cm] x 1.65)/1,000
- Adjusted Body Weight (ABW)
 - > May be used in adolescent population, similar to adults
- Dosing adjustments based on IBW or ABW are primarily based on adult data
 - Use in pediatric population is exploratory, as formulas do not take into account pharmacokinetic differences in children compared to adults
- Use weight-based dosing for patients <18 years of age and <40 kg (Matson, 2017)</p>

8

For children >40 kgs, weight-based dosing should be used until the patient's dose or dose per day exceeds that recommended for adults

Assessment of Growth (Height / Weight)

9

Growth Charts

- World Health Organization (WHO): birth to 2 years of age
- Centers for Disease Control and Prevention (CDC): 2 to 20 years of age
- Assess: head circumference, height/length, weight, body mass index (BMI)
 - ▶ Underweight: BMI <5th percentile
 - ▶ Healthy weight: BMI 5th to <85th percentile
 - Overweight: BMI 85th to <95th percentile
 - > Obese: BMI ≥ 95th percentile
- Medication dosing errors occur in a higher rate in overweight and obese children (Miller, 2010)

Common Dosing Errors

mg/kg/dose vs. mg/kg/day

- Caution with how doses are listed in references
 - mg/kg every X hours
 - mg/kg/day divided every X hours
 - mg/kg/day divided X times per day

Combination products

- > Dose based off of active component (e.g. ampicillin in ampicillin/sulbactam)
- Maximum weight-based dose
 - Maximum dose in adults should not be exceeded when using weight-based dosing in pediatrics

Example: Piperacillin/tazobactan

200 to 300 mg **piperacillin**/kg/**day** divided every 6 to 8 hours Assume: 300 mg/kg/day divided every 8 hours

- Child weighing 20 kg
 - 20 kg x 300 mg/kg/day = 6000 mg/day
 - > 2000 mg every 8 hours
 - Premix 2.25 g bag
 - > 2000 mg piperacillin

- Child weighing 22 kg
 - 22 kg x 300 mg/kg/day = 6600 mg/day
 - 2250 mg every 8 hours
 - Premix 2.25 g bag

2000 mg piperacillin

Example: Piperacillin/tazobactan

200 to 300 mg piperacillin/kg/day divided every 6 to 8 hours

- Child weighing 50 kg
 - 50 kg x 200 to 300 mg/kg/day = 10,000 to 15,000 mg/day (max 12,000 mg/day)
 - ▶ 12,000 mg/day → 3,000 mg every 6 hours or 4,000 mg every 8 hours
- Dosage Forms
 - 3.375 g = Piperacillin 3 g and tazobactam 0.375 g
 - 4.5 g = Piperacillin 4 g and tazobactam 0.5 g

Dosage Form Considerations

Solid Dosage Forms

- Ability to swallow solid dosage forms (~age 7) (Zajicek, 2013)
- Some tablets can be crushed or capsules can be opened (ISMP, 2020)
- Dietary issues (e.g. carbohydrate content for child on ketogenic diet)
- Feeding tubes

Liquid Dosage Forms

- Provide most flexibility
- Preferred unit of measurement = milliliter (mL)

- Avoid "teaspoon" or "tablespoon"
- Oral syringe with calibration marks
 - Dose rounding
- Volume consideration
 - Use most concentrated formulation

Assessment of Vital Signs

Electronic Health Records often have reference ranges that may be set as adult values

- Respiratory rate and pulse are generally higher in children
 - Highly variable when a pediatric patient is in distress
- Blood pressure is generally lower in children
- Temperature is the same
 - ▶ Normal: 36.5 37.5°C
 - ▶ Neonates with sepsis temperature may be higher or lower than normal
 - Rectal temperatures are most accurate in infants and children < 3 years of age</p>

Assessment of **Renal Function**

Schwartz Equation	Bedside Schwartz Equation
(Height [cm] x k) / SCr (mg/dL)	0.413 x (height [cm] / SCr [mg/dL])
k = 0.33 for premature infants (<1yr)	
k = 0.45 for infants 1-52 weeks old	
k = 0.55 for children 1-13 years old	
k = 0.55 for adolescent females 13-18 years old	
k = 0.7 for adolescent males 13-18 years old	
SCr = serum creatinine	

- Schwartz Equation may overestimate renal function (Schwartz, 2009)
- Bedside Schwartz developed to improve upon Schwartz Equation and validated using "newer" methods to measure serum creatinine (isotope dilution mass spectrometry [IDMS] traceable)
 - Based off cohort of children with chronic kidney disease (CKD)
 - Only applied to patients 1-18 years of age
- Results are normalized to 1.73m² (reported as mL/min/1.73m²)

Assessment of Renal Function

- Absolute change in serum creatinine and urine output must be considered
 - ▶ Goal urine output >0.5 1 mL/kg/hour
- Acute Kidney Injury (AKI) (KDIGO, 2012)
 - ▶ Increase in serum creatinine by ≥0.3 mg/dL from baseline within 48 hours

- ▶ Increase in serum creatinine by \geq 1.5 times baseline within the prior 7 days
- ▶ Urine volume of ≤0.5 mL/kg/hour 6 hours

Therapeutic Drug Monitoring: Vancomycin

- 2020 Guidelines (Rybak, 2020)
 - ▶ Challenge: diversity in developmental pharmacology from neonates → adolescents
 - Revised primarily due to concerns of nephrotoxicity with the use of trough monitoring
 - Factors important in determine exposure: age, weight, renal function, MIC (Le, 2015)
 - Limited outcomes data
 - Staphylococcus aureus bacteremia
 - Trough >15 mg/L not associated with improved outcomes, but increased AKI (McNeil 2016, 2017)
 - AUC/MIC >400 not associated with improved outcomes (Hahn, 2015)
 - Dosing in children should be designed to achieve an AUC/MIC of 400 600 mg•h/L
 - Correlates to trough of 7 10 mg/L

Therapeutic Drug Monitoring: Vancomycin

- ▶ Empiric dosing: 60 80 mg/kg/day divided every 6 hours (MIC ≤ 1 mg/L)
 - Children 3 months to < 12 years of age: 80 mg/kg/day</p>
 - Children ≥ 12 years of age: 60 70 mg/kg/day
- Unlikely to achieve target AUC exposure if MIC > 1 mg/L
- Renal impairment: 45 mg/kg/day divided every 8 hours (Le, 2014)
- Monitoring of both serum concentrations and renal function imperative

Therapeutic Drug Monitoring: Vancomycin

Minimizing AKI risk

- Function of vancomycin exposure
 - ▶ 2.7-fold increased risk of AKI when vancomycin trough concentration \ge 15 mg/L (Fiorito, 2018)
 - ▶ 2.5-fold increased risk of AKI when vancomycin AUC of \ge 800 mg•h/L and trough concentrations of \ge 15 mg/L (Le, 2015)
- Avoid doses >100 mg/kg/day
- Therapeutic drug monitoring AUC
 - ▶ 1 concentration (trough) \rightarrow Bayesian estimation
 - > 2 concentration (peak and trough) \rightarrow First-order PK equations

Equations

Elimination rate: $Ke = \frac{Ln(\frac{Conc_1}{Conc_2})}{\Delta t(hr)}$

Half-life: Thalf = $\frac{ln(2)}{ke}$

Extrapolated peak concentration: $Cmax = \frac{Conc_1}{e^{-Kr(t-tinf)}}$

Extrapolated trough concentration: $Cmin = Conc_2 \times e^{-K\theta(\tau-t)}$

Volume of distribution: $Vd = \frac{Dose}{Ke \times Cmax \times tinf} \times \frac{1 - e^{(-Ke \times tinf)}}{1 - e^{(-Ke \times t)}}$

Area under the curve 24 hours: $AUC = \frac{Daily \ dose}{\kappa e \times Vd}$

New Dose = $Ke \times Vd \times AUC_{target}$

Medication Adverse Events

EMERGING CONCERNS WITH ACID SUPPRESSIVE THERAPY

Acid Suppressive Therapy (AST)

Acid suppressive therapy

- Histamine H_2 -receptor antagonists (H_2RAs)
- Proton pump inhibitors (PPIs)

Indications

- Dyspepsia
- Eosinophilic esophagitis
- Erosive esophagitis
- Gastric and duodenal ulcers
- Gastroesophageal reflux disease (GERD)
- Helicobacter pylori gastritis
- Hypersecretory conditions (e.g. Zollinger-Ellison syndrome)
- Prophylaxis

Increasing Use of AST in Children

22

Increasing PPI usage

- ▶ Quadrupled from 1999 → 2003 (Barron, 2007)
- ▶ Doubled from 2004 → 2008 (Illueca, 2014)

► Why?

- Overtreatment of physiologic reflux (newborns)
- Prolonged treatment durations

GER vs. GERD

Gastroesophageal Reflux (GER)

- Movement of stomach contents into the esophagus and sometimes though mouth/nose
- "Happy spitters"
- Mild feeding problems (e.g. occasional prolonged feeds or interrupted feeds)
- Normal
 - ▶ Begins at 2-3 weeks
 - Peaks between 4-5 months
 - Resolves at 9-12 months

- Gastroesophageal Reflux Disease (GERD)
 - Refusal to feed
 - Crying and/or arching the back during feeds

- Blood or greenish color in spit-up
- Increase in frequency or intensity of spit-up
- Stomach is distended / hard
- Respiratory symptoms (e.g. wheezing, coughing)
- Not gaining weight appropriately
- Fewer wet diapers / bowel movements

Negative Effects of AST

- PPIs do not relieve symptoms related to GER in infants
- Growing body of research revealing negative effects of PPI therapy

Adults

- Chronic kidney disease
- Decreased bone mass
- ► Fractures
- Gastric cancers, infections, polyps
- Mortality

Children

- Clostridium difficile infections
- Community/hospital acquired pneumonia

- Obesity
- Asthma
- ► Fractures

AST and Fracture Risk in Children (Wagner, 2019)

AST during first year of life may be associated with an increased fracture rate during the first 5 years of life

	0-5 Years	0-1 Years	2-5 Years
Caffeine	0.79 (0.40 – 1.58)	1.60 (0.39 – 6.63)	0.72 (0.34 – 1.53)
PPIs	1.43 (1.13 – 1.81)	1.14 (0.60 – 2.15)	1.47 (1.14 – 1.89)
Postnatal corticosteroids	1.15 (0.82 – 1.60)	0.87 (0.40 – 1.91)	1.17 (0.81 – 1.69)
Diuretics	1.40 (0.75 – 2.61)	1.28 (0.32 – 5.10)	1.42 (0.71 – 2.82)
H ₂ RA	1.07 (0.95 – 1.20)	1.34 (0.95 – 1.89)	1.05 (0.93 – 1.18)

AST and Fracture Risk in Children (Malchodi, 2019)

	Unadjusted HR (95% CI)	Adjust HR (95% CI)
★ Male sex	1.08 (1.07 – 1.10)	1.08 (1.06 – 1.09)
Preterm birth	0.98 (0.95 – 1.02)	1.01 (0.97 – 1.05)
LBW	0.90 (0.86 – 0.95)	0.90 (0.85 – 0.94)
+ Previous fracture	1.85 (1.75 – 1.96)	3.59 (3.22 – 4.00)
Anti-epileptic medication	0.98 (0.92 – 1.04)	0.99 (0.93 – 1.05)
Overweight / obesity	1.12 (1.09 – 1.14)	0.99 (0.95 – 1.04)
★ PPI	1.23 (1.15 – 1.32)	1.23 (1.14 – 1.31)
H ₂ RA	1.13 (1.10 – 1.15)	1.04 (0.99 – 1.09)
🛨 Both	1.32 (1.26 – 1.38)	1.31 (1.25 – 1.37)

AST and Fracture Risk in Child (Malchodi, 2019)	ren 27
Fracture hazard ↑ with <u>duration</u> of AST exposure for	PPI H ₂ RA Both

7,998 (9%) PPI			
Days on Medication	Adjusted HR (95% CI)		
0 – 30 days	1.19 (1.11 – 1.29)		
30 – 60 days	1.20 (1.09 – 1.33)		
60 – 150 days	1.23 (1.13 – 1.33)		
>150 days	1.41 (1.32 – 1.52)		

71,578 (73%) H ₂ RA			
Days on Medication	Adjusted HR (95% CI)		
0 – 30 days	1.14 (1.09 – 1.18)		
30 – 60 days	0.99 (0.90 - 1.08)		
60 – 120 days	1.16 (1.11 – 1.21)		
>120 days	1.22 (1.17 – 1.27)		

17,710 (18%) Both			
Days on Medication	Adjusted HR (95% CI)		
0 – 120 days	1.17 (1.06– 1.29)		
120 – 192 days	1.31 (1.18 – 1.47)		
192 – 338 days	1.20 (1.08 – 1.32)		
>338 days	1.50 (1.37 – 1.65)		

AST and Fracture Risk in Children (Malchodi, 2019)

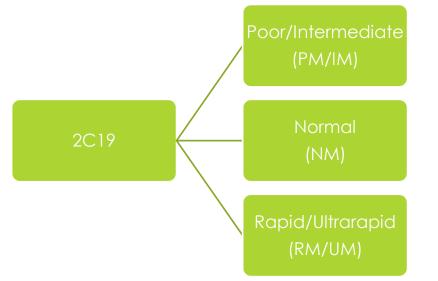
Fracture hazard ↑ with <u>earlier initiation</u> for

PPI

Both

	First 6 months (n=84,845)	6-12 months (n=12,441)	12-24 months (n=8,390)
Male sex	1.08 (1.06 – 1.09)	1.08 (1.06 – 1.09)	1.08 (1.07 – 1.10)
Preterm birth	0.99 (0.96 – 1.04)	1.03 (0.98 – 1.07)	1.02 (0.97 – 1.06)
LBW	0.90 (0.85 – 0.95)	0.89 (0.84 – 0.94)	0.89 (0.84 – 0.94)
Previous fracture	3.57 (3.20 – 3.98)	3.52 (3.14 – 3.95)	3.50 (3.13 – 3.93)
Anti-epileptic medication	0.98 (0.92 – 1.05)	0.98 (0.92 – 1.05)	0.98 (0.92 – 1.05)
Overweight / obesity	0.99 (0.94 – 1.04)	0.99 (0.94 – 1.05)	0.99 (0.94 – 1.04)
PPI	1.23 (1.14 – 1.33)	1.21 (1.05 – 1.39)	1.06 (0.91 – 1.24)
H2RA	1.04 (0.99 – 1.10)	1.04 (0.92 – 1.17)	0.91 (0.75 – 1.11)
Both	1.32 (1.26 – 1.38)	1.23 (1.07 – 1.41)	1.38 (1.16 – 1.65)

AST and Asthma Risk in Children (Wang, 2021)


Variable	PPI Initiators, Incidence rate (n=80,870)	Non-initiators, Incidence Rate (n=80,870)	Hazard Ratio (95% CI)
Primary	21.8	14.0	1.57 (1.49 – 1.64)
Age group			
<6 months	153.4	83.0	1.83 (1.65 – 2.03)
6 months to <2 years	113.8	58.2	1.91 (1.65 - 2.22)
2 years to <6 years	24.1	17.4	1.38 (1.09 - 1.74)
6 years to <12 years	17.5	11.5	1.53 (1.37 – 1.72)
≥12 years	14.6	9.8	1.49 (1.39 – 1.59)
Timing of asthma onset			
≤ 90 days	29.5	18.2	1.62 (1.42 – 1.85)
91 – 180	29.3	16.9	1.73 (1.52 – 1.98)
≥181	20.0	13.1	1.53 (1.45 – 1.62)
a. Incidence rate calculated as events per 1,000 person-years			

PPI and 2C19 Phenotype

► CYP2C19 inactivates PPIs

Common genetic variants give rise to several metabolizer phenotypes (slow → rapid)

 Differences in CYP2C19 activity may have clinical significance (Bernal, 2019)

PPI and 2C19 Phenotype (Bernal, 2019)

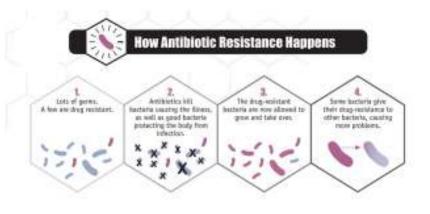
PM/IM (n=183) NM (n=267) **RM/UM (n=220)** PM/IM vs. NM NM vs. RM/UM Total infections 1 (0-3) 0.10 0.03 2 (0-3) 1 (0-3) **Respiratory infections** 1 (0-2) 1 (0-3) 1 (0-2) 0.17 0.07 0 (0-1) 0 (0-1) 0.4 0.1 Gastrointestinal infections 0 (0-1)

PM/IM = poor metabolizer/intermediate metabolizer NM = normal metabolizer RM/UM = rapid metabolizer/ultrarapid metabolizer

Infection events reported as median (interquartile range)

CYP2C19 metabolizer status was a significant risk factor for infection events

Odds Ratio 0.70 [95% CI 0.50 – 0.97] for RM/UM vs. NMs

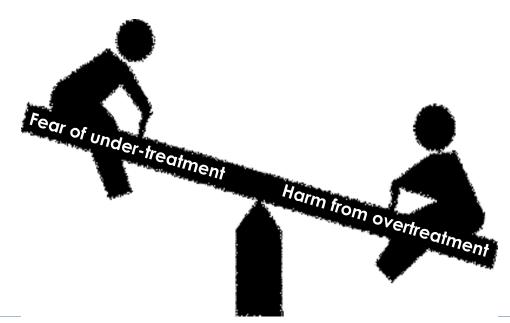

Antimicrobial Stewardship

DURATION OF TREATMENT

Antimicrobial Resistance

Target vs. Collateral (Llewelyn, 2017)

- Target: Mutations conferring antibiotic resistance arise spontaneously and selected for during treatment
 - Causes: multifactorial, duration
 - ▶ Examples: MDR Pseudomonas, tuberculosis, HIV
- Collateral: commensal organisms in gut, skin or mucous membranes develop antimicrobial resistance during treatment of other infections
 - Causes: broad-spectrum antibiotic use, duration
 - > Examples: S. aureus, Enterobacteriaceae



33

https://www.cdc.gov/antibiotic-use/community/about/antibiotic-resistance-faqs.html

 Adults: shorter durations OK for infections such as pneumonia, urinary tract infections, sinusitis, cellulitis (Royer, 2018; Hanretty, 2018)

Discharge Antibiotic Stewardship

35

The 4 D's of Discharge Stewardship (Hersch, 2016)

- Diagnosis
- Drug
- **Duration**
- Designated clinician

Acute Otitis Media (AOM)

Affects children > adults

- Commonly caused by bacteria and viruses
- Middle ear inflammation, fluid accumulation resulting and infection
- > ³/₄ children will have a pediatrician sick visit for AOM by 3 years of age

AOM Duration of Treatment

- Duration (Lieberthal, 2013)
 - ▶ 10 days
 - severe or < 2 years old</p>
 - 7 days
 - ▶ 2 5 years of age with mild-moderate symptoms
 - 5 7 days
 - \geq 6 years of age with mild-moderate symptoms

Duration of Therapy

The optimal duration of therapy for patients with AOM is uncertain; the usual 10-day course of therapy was derived from the duration of treatment of streptococcal pharyngotonsillitis.

Study or subgroup	Short course	Long course	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto,Fixed,95% C		Peto/Fixed,95% C
Adam 1996	6/48	448		13%	1.56 [0.42, 5.72]
Adam 2000	B/102	3/110	1.000	1.5 %	2.82 [0.84, 9.46]
Block 2000	66/190	65/183	+	122%	097[063,1.48]
Block 2004	36/164	26/160	-	7.2 %	1.44 [0.83, 2.51]
Boulesteix 1995	11/124	11/118	77 (C)	2.9 %	0.95 [0.39, 2.27]
Catania 2004	9/204	10/196	5000	2.6%	086[034,216]
Cohen 1997	60/166	56/168		10.8 %	1.13 [0.72, 1.77
Cohen 1998	51/192	28/186	+	8.9 %	2.00 [1.22, 3.29
Cohen 2000	46/226	23/222	-	8.4 %	2.15 [1.29, 3.59
Gooch 1996	46/147	96/350	5. 1	12.2 %	1.17 [0.77, 1.79
Hendrickse 1988	20/62	15/66	3 -	1.7 %	1.61 [0.74, 3.49
Hoberman 1997	57/197	64/367	•	12.4 %	1.98 [1.30, 3.01
ingvansion 1982	5/66	6/68	200000	15%	0.85 [0.25, 2.90
Kafetais 1997	16/286	10/274	5.000	35 %	1.55 [0.71, 3.40
Pesasy 1999	45/175	51/172	1	9.9%	0.82 [0.51, 1.31
Ploussard 1984	4/27	5/29		1.1 %	0.84 [0.20, 3.45
Total (95% CI)	2376	2717	•	100.0 %	1.34 1.15, 1.55
Total events: 486 (Short os Heterogeneity: Chi7I = 20. Test for overall effect: Z > Test for subgroup differenc	78, df = 15 (P = 0.14); 3.84 (P = 0.00012)				

Favours short course Favours long course

(Kozyrskyj, 2010)

Shortened Antimicrobial Treatment Acute Otitis Media in Young Childre

(Hoberman, 2016)

Table 2. Clinical-Failure Rates for the Index Episode of Acute Otitis Media at or before the End-of-Treatment Visit, According to Selected Characteristics at Entry.*

Characteristic	10-Day Group (N = 257)	5-Day Group (N=258)	All Children (N=515)	Odds Ratio (95% CI)†	P Value
	no. of childre	n with clinical failure/to	tal no. (96)	0000000000	
All children	39/238 (16)	77/229 (34)	116/467 (25)	NA	-
Age at entry					0.94
1223 mo	15/116 (13)	41/111 (37)	56/227 (25)	Reference	
6-11 mo	24/122 (20)	36/118 (31)	60/240 (25)	1.0 (0.7-1.6)	

- 520 children
- Amox/Clav 90 mg/kg/day
- Primary outcome: clinical response (treatment failure) at ~14 days
 - ▶ 16% (10D) vs. 34% (5D); difference = 17% points; 95% CI = 9 25
 - Non-inferiority criteria not met
- Colonization with penicillin non-susceptible pathogens: 44% (5D) vs. 47% (10D) (p=0.58)

40

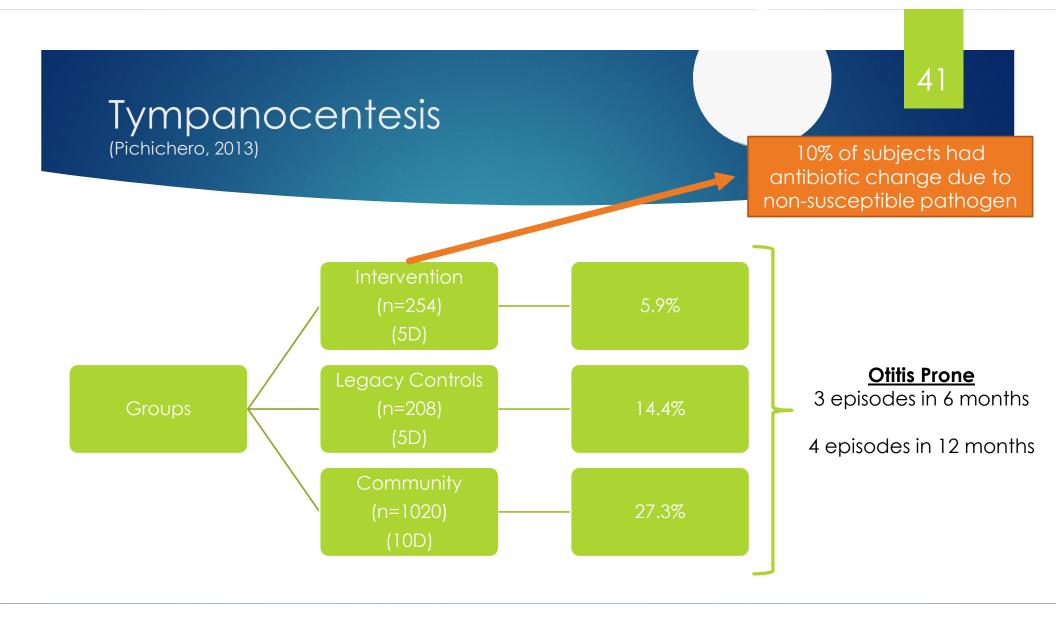

Eradication Rate (Arguedas, 2006)

TABLE 2. Bacteriologic Response at the On Therapy Visit (Day 4 to 6) Among Bacteriologically Evaluable Children

	Eradication Rate		DEC CLOS DOCUMENT	
	Age ≤24 mo	Age >24 mo	95% CI for Difference	
Bacteriologic response by child	119/171 (70)*	51/59 (86)	-28.0, -5.7	
Target pathogen cradication rate	144000 (00)	87100 (D0)	017 (0	
Overall	144/200 (72)	57/66 (86)	-24.7, -4.0	
Haemophilus influenzae [†]	67/97 (69)	23/28 (82)	-30.0, 3.8	
B-Lactamase-positive	15/17 (88)	3/3 (100)	-27.1, 3.6	
B-Lactamase-negative	50/76 (66)	17/22(77)	-32.0, 9.0	
Streptococcus pneumoniae [†]	59/83 (71)	22/26 (85)	-30.5, 3.4	
Penicillin-susceptible	33/36 (92)	17/19 (89)	-14.3, 18.7	
Penicillin-intermediate	16/23 (70)	2/4 (50)	-32.9,72.0	
Penicillin-resistant	8/21 (38)	2/2 (100)	-82.7, -41.1	
Moraxella catarrhalis	15/17 (88)	6/6 (100)	-27.1, 3.6	
B-Lactamase-positive	14/16 (88)	3/3 (100)	-28.7, 3.7	
8-Lactamase-negative		Contraction of the Contract		
Streptococcus pyogenes	3/3 (100)	6/6 (100)		

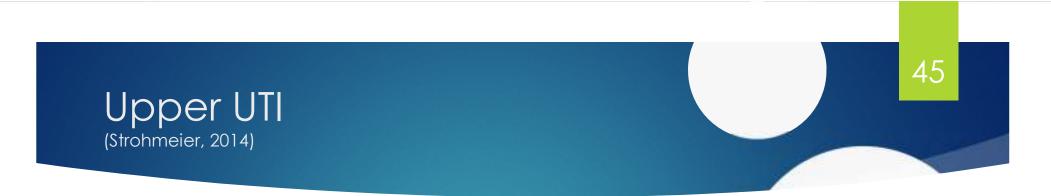
"Numbers in parentheses, percent.

[†]Includes isolates that constituted single pathogen and mixed infections.

AOM Summary

- Duration (Lieberthal, 2013)
 - ▶ 10 days
 - severe or < 2 years old</p>
 - 7 days
 - ▶ 2 5 years of age with mild-moderate symptoms
 - ▶ 5 7 days
 - \geq 6 years of age with mild-moderate symptoms

Urinary Tract Infections (UTI)


- UTI occurs when pathogenic organisms infect any of the structural components of the urinary tract
- Incidence in pre-pubertal children
 - ▶ Females = 3%
 - Males = 1%
- ▶ In children < 12 months who present with fever, UTI prevalence is higher
- Duration: 7 to 14 days (Roberts, 2011)

 The optimal duration of antimicrobial treatment has not been determined. RCTs of head-to-head comparisons of various duration would be valuable, enabling clinicians to limit antimicrobial exposure to what is needed to eradicate the offending uropathogen.

- Positive culture at the end of treatment
 - Short (2-4 days) vs. Standard (7-14 day)
 - Lower UTI (afebrile) excluded children with upper UTI (e.g., pyelonephritis)

Timeframe	No. of Studies	Short Duration	Standard Duration	RR [95% CI]
End of Treatment	8	34/232 (15.9%)	27/191 (14.1%)	1.06 [0.64 – 1.76]
1 to 3 months	6	19/138 (13.8%)	20/131 (15.3%)	0.83 [0.46 – 1.47]
3 to 15 months	4	42/129 (32.6%)	35/109 (32.1%)	1.05 [0.73 – 1.52]
1 to 15 months	10	62/267 (23.2%)	57/240 (23.8%)	0.95 [0.70 – 1.29]

Pyelonephritis

Oral only (10-14 days) vs. IV (3 days) + Oral (10 days)

Outcome	No. of Studies	Oral Only	IV + Oral	RR [95% CI]
Persistent UTI at 72 hours	2	1/266 (0.4%)	1/276 (0.4%)	1.10 [0.07 – 17.41]
Kidney damage	4	88/470 (19%)	106/473 (22%)	0.82 [0.59 – 1.12]

- Short (5 days) vs. Standard (10 days)
 - Non-inferiority study
- Children 2 10 years of age
 - Stratified by presence or absence of fever
- ▶ 693 children \rightarrow 345 (short) vs. 348 (standard)
 - Median age: 4 (IQR 2-6) years
 - ▶ 96% female

- Treatment success: 322/336 (95%) short vs. 326/328 (99%) standard
 - Treatment failure was not related to age group, fever at presentation, antibiotic type, or study site.
 - No significant differences between groups the in the rates of adverse events, recurrent infection, clinical symptoms that may have been related to UTI, or emergent antibiotic resistance.
- Both 5 and 10 day treatment durations resulted in high success rates
 - Non-inferiority criteria not met
 - Could not conclude 5 days was not inferior to 10 days

European Society of Pediatric Urology (Radmayr, 2020)

UTI Type	Total Duration (Days)		
Uncomplicated UTI	4 – 7		
Pyelonephritis in neonate	14 – 21		
Pyelonephritis infants aged 1-6 months	10 - 14		
Uncomplicated pyelonephritis infants > 6 months old	7 – 10		
Complicated pyelonephritis/urosepsis at any age	10 - 14		

Community Acquired Pneumonic (CAP)

- One of the most common, serious infections in childhood
- 1 million outpatient antibiotic courses annually
- > 70% of children will be infected with a virus (EPIC study)
- Duration: 10 days (Bradley, 2011)
 - Complicated (e.g., parapneumonic effusions/empyema): 2-4 weeks

Non-Severe CAP (Haider, 2008)

Children 2 to 59 months

Outcome	No. of Studies	3 days	5 days	RR [95% CI]
Clinical cure	2	1783/2013 (89%)	1794/1999 (90%)	0.99 [0.97 – 1.01]
Treatment failure	3	310/2892 (11%)	287/2871 (10%)	1.07 [0.92 – 1.25]
Relapse	4	110/2735 (4%)	100/2734 (4%)	1.09 [0.84 – 1.42]

- Studies performed in developing countries
- CAP diagnosed by World Health Organization (WHO) criteria
 - Clinical findings + respiratory rate thresholds (i.e., no radiographic evidence)
- Many children probably had viral pneumonia

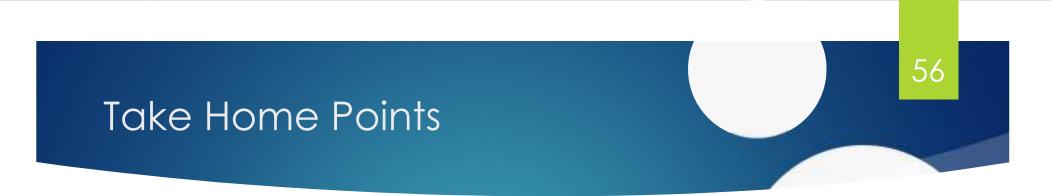
Radiographically Confirmed CAP

Mean age ~ 2 years Stage 1 Stage 2 **Evoluable Subjects Eligible Subjects** n = 17 n = 91 Stage 2: 5 days vs. 10 days of Randomization Randomization amoxicillin 3 day group 10 day group 10 day group 5 day group n = 10 n = 7 n = 49 n = 42 Stage 1+2 **Evaluable Subjects** Primary outcome: treatment m =108 failure 10 day group 5 day group 3 day group n = 56 n = 42 n = 10 5 days was not inferior to 10 Failure Failure Failure days n = 4 (40%) n = 0n = 0

- Short (5 days) vs. Standard (10 days)
 - Non-inferiority trial
- Children 6 months to 10 years of age
 - Pneumonia with positive chest radiograph
 - Treated in emergency department
 - Excluded if hospitalized
- > 281 children \rightarrow 140 (short) vs. 141 (standard)
 - ▶ Median age: 2.6 (IQR 1.6 4.9) years

SAFER Study

- Clinical cure at 14-21 days
 - Per-protocol: 101/114 (88.6%) short vs. 99/109 (90.8%) standard
 - ▶ Non-inferiority criteria <u>not</u> met
 - Intention-to-treat: 108/126 (85.7%) short vs. 106/126 (84.1%) standard
 - ▶ Non-inferior
- Both 5 and 10 day treatment durations resulted in high success rates
 - Non-inferiority criteria <u>not</u> met (for per-protocol analysis)
 - Could not conclude 5 days was not inferior to 10 days


Clinical failure criteria

- No more than 1 fever from day 4 through follow-up (14-21 days)
- No additional antibacterial because of persistent/progressive symptoms
- ▶ Post-hoc analysis: clinical cure not requiring additional intervention
 - 107/112 (95.5%) short vs. 104/109 (95.4%) standard
 - > Noninferior (but, could not formally conclude based on a priori, per protocol analysis)
- > 5 days of antibiotics likely works as well as 10 days for most children with CAP

- Short Course vs Standard Course Outpatient Therapy of Community Acquired Pneumonia in Children (SCOUT-CAP) [NCT02891915]
 - Multi-center, randomized, double-blind, placebo-controlled, superiority
 - Short (5-day) vs. standard (10-day) course in children (6 months 6 years) who are diagnosed with CAP

Uncomplicated: 10 days is most likely too long

- Medication dosing in the pediatric population is individualized and based on patientspecific factors such as age, weight or body surface area
- Questions and challenges exist when applying pharmacokinetic goals derived from adults to the general pediatric population (e.g., vancomycin)
- Acid suppressive therapy has several negative adverse effects in children and should be limited to the shortest duration possible
- Duration of antibiotic therapy is an important component of antimicrobial stewardship and further studies are needed to clarify the optimal duration for common pediatric infectious diseases