ECMO in the Era of COVID-19: Optimizing Medication Management

Amy L. Dzierba, PharmD, FCCM, FCCP, BCCCP Clinical Pharmacist, Adult Critical Care Department of Pharmacy NewYork-Presbyterian Hospital Columbia University Irving Medical Center

Disclosures

- No conflicts of interest
- Off-label drug use will be discussed

Pharmacist Objectives

- 1. Describe the indications and outcomes of extracorporeal membrane oxygenation (ECMO) for adult patients with and without severe coronavirus disease 2019 (COVID-19)
- 2. Explain altered pharmacokinetics and pharmacodynamics of medications in critically ill patients receiving ECMO
- 3. Devise an approach to optimize medication management in critically ill patients receiving ECMO

Pharmacy Technician Objectives

- 1. List the indications for ECMO for adult patients
- 2. Recognize common medications used in adult patients receiving ECMO with and without severe COVID-19
- 3. Recognize the potential for increased medication requirements for adult patients receiving ECMO

First U.S. confirmed COVID-19 case: January 21, 2020 U.S. cases .S. deaths*: 79,978,129 978,852

*As of April 3, 2022

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html.

Siddiqi HK and Mehra MR. J Heart and Lung Transplant. 2020;39:405-7.

COVID-19-associated ARDS

PaO₂:FiO₂=ratio of partial pressure of oxygen in arterial blood to the fractional concentration of oxygen in inspired air; PEEP=positive end-expiratory pressure; PaCO₂=partial pressure of carbon dioxide in arterial blood

Abrams D, et al. Lancet Respir Med. 2019;7:108-10.

What is ECMO?

Brodie D, et al. N Engl J Med. 2011;365:1905-14.

Photo courtesy of Robert Bartlett, MD

Photo courtesy of Dana Mullin, MS, CCP, LP

General Concepts of ECMO

- Provides stabilization of pulmonary or cardiopulmonary dysfunction
- Does not treat the underlying disease
- Patient selection guided by reversibility of underlying cause

Veno-venous (VV) ECMO

Abrams D, et al. Clin Chest Med. 2014;35:765-79. Abrams D, et al. J Am Coll Cardiol. 2014;63:2769-78.

Veno-arterial (VA) ECMO

Blood Drainage: Blood Reinfusion: Conditions Treated:

Artery

Cardiogenic shock (myocardial infarction, sepsis, post-cardiotomy); fulminant myocarditis; pulmonary hypertension; cardiopulmonary resuscitation; primary graft failure after heart transplantation; bridge to VAD implantation or heart transplantation; prevention of acute RV failure after LVAD implantation

> Abrams D, et al. Clin Chest Med. 2014;35:765-79. Abrams D, et al. J Am Coll Cardiol. 2014;63:2769-78.

RV=right ventricle; LVAD=left ventricular assist device

- A 45-year-old woman with an unremarkable medical history presents to the emergency room with severe shortness of breath, tachypnea, and altered mental status
- Chest radiography reveals diffuse, bilateral opacities
- In the ICU, she is intubated with lung protective ventilation, initiated on continuous fentanyl and propofol infusions to allow for a deep level of sedation, and is in the prone position
- It is decided to initiate extracorporeal support

Which one of the following forms of extracorporeal support is best to recommend for this patient?

1. VV-ECMO
2. VA-ECMO

Which one of the following forms of extracorporeal support is best to recommend for this patient?

VV-ECMO

(Bridge to recovery)

A 65-year-old man with interstitial lung disease and pulmonary hypertension (PH), presenting with decompensated PH and RV failure → desaturates despite high flow nasal cannula and non-rebreather mask

Bridge to transplant

A 44-year-old woman presents with sudden cardiac arrest (ventricular fibrillation) → conventional CPR performed for 12 minutes without return of spontaneous circulation

→ VA-ECMO

VA-ECMO

Bridge to decision

CPR=cardiopulmonary resuscitation

Peek GJ, et al. Lancet. 2009;374:1351-63. Combes A MA, et al. N Engl J Med. 2018;378:1965-75.

Changes in Survival with COVID-19

15%

1182 patients received ECMO at 236 earlyadopting centers 2824 patients received ECMO at one of the earlyadopting centers

May 1, 2020

In-hospital mortality 90 days after starting ECMO

36.9% (95% CI 34.1-39.7)

51.9% (95% CI 50.0-53.8)

Barbaro RP, et al. Lancet. 2021;398:1230-38.

International ECMO Growth

http://www.elsonet.org

Pharmacotherapy in Critically III

Pharmacokinetic Alterations

Critical Illness

 1 Increased $\alpha_1\text{-}acid$ glycoprotein and decreased albumin concentrations 2 Mostly affects hydrophilic drugs

Dzierba AL, et al. Crit Care. 2017;21:66.

Pharmacokinetic Alterations

Extracorporeal Membrane Oxygenation

¹Mostly affects hydrophilic drugs

Dzierba AL, et al. Crit Care. 2017;21:66.

- Polyvinyl chloride tubing
- Membrane oxygenator
- Better Bladder[®]
- Bridge line
- Priming solution

Other factors:

- Administration of the drug
- Recirculation
- Age of the circuit

Drug Factors

			. ↓	_
Lipophilicity	Drug	Protein binding	Octanol/water partition (log p)	
Ionization	Propofol	95-99%	4.0	
Tomzation	Fentanyl	79-87%	3.9	ity
	Lorazepam	85-91%	3.5	ilic
Molecular weight	Midazolam	97%	3.3	hq
	Dexmedetomidine	94%	3.3	ipo
	Hydromorphone	8-19%	0.9	-
Protein binding	Morphine	20-35%	0.8	
		1		

Wishart DS, et al. Nucleic Acids Res. 2008;36:D901-6.

Pharmacokinetic Changes with Critical Illness and ECMO Circuit

Drugs that can be titrated to endpoints (e.g. sedation) Drugs that <u>CANNOT</u> be titrated to endpoints (e.g. antimicrobials)

Patient Experience

Analgesics and Sedatives

Drug	Protein binding (%)	Log p
Fentanyl	79-87	3.9
Remifentanil	60-70	1.7
Hydromorphone	8-19	0.9
Morphine	20-35	0.8

Sequestration by ECMO circuit:

Fentanyl > Remifentanil>>> Morphine > Hydromorphone

Drug	Protein binding (%)	Log p
Propofol	95-99	4.0
Lorazepam	85-91	3.5
Midazolam	97	3.5
Dexmedetomidine	94	3.3

Sequestration by ECMO circuit: Propofol >>> Midazolam > Lorazepam > Dexmedetomidine

Wishart DS, et al. Nucleic Acids Res. 2008;36:D901-6.

Sedation Requirements

- Retrospective analysis of 29 patients receiving VV/VA ECMO
- Local protocol = deep sedation at ECMO initiation → lightened when possible
- Daily dose of midazolam increased on average by 18 mg (95% CI 8-29); p=0.001
- Daily dose of morphine increased on average by 29 mg (95% CI 4-53); p=0.02

Sedation Requirements

Retrospective analysis of 45 patients receiving VV-ECMO for ARDS

	48-hrs post VV-ECMO initiation (n=45)
Deeply sedated, n (%)	43 (96)
Continuous infusion sedative, n (%)	43 (96)
Continuous infusion opioid, n (%)	44 (98)
Daily propofol dose in mg, median (IQR)	3,380 (1,105-4,110)
Daily midazolam equivalents dose in mg, median (IQR)	202 (103-247)
Daily fentanyl equivalents dose in mcg, median (IQR)	4,800 (3,000-5,820)

DeBacker J, et al. ASAIO J. 2018;64:544-51.

Influence of ECMO on Sedation

	ECMO Group (n=34)	Non-ECMO Group (n=60)	p-value
Sedative infusion exposure during the 6 hr maximum period, mg	118 (48-225)	60 (37-99)	0.004
Days of sedative infusion use prior to the 6 hr maximum	4 (1-8)	1 (0.5-6)	0.004
Sedative infusion rate at the time 6 hr maximum was reached, mg/hr	10 (5-22)	6 (4-12)	0.04

Median (IQR)

Includes all benzodiazepines, propofol, and dexmedetomidine infusions (expressed in midazolam equivalents)

Adjusted model to estimate the impact of ECMO on the 6 hr maximum sedative exposure failed to show significance

DerNigoghossian C, et al. Pharmacotherapy. 2016;35:2527-16.

Sedation Requirements with COVID-19

Opioid and sedative requirements in patients with COVID-19-associated ARDS compared to non-COVID-19 ARDS

Younger age

High respiratory drive

Intense inflammatory response

Ego A, et al. Microorganisms. 2021;9:2393. Tapaskar N, et al. Ann Pharmacother. 2022;56:117-23.

Sedation Requirements with COVID-19 and ECMO

Retrospective, observational matched cohort of patients with ARDS receiving VV-ECMO

	COVID-19 Positive (n=22)	COVID-19 Negative (n=22)	p-value
Proportion of ECMO days with RASS \geq -2	0.48 (0.32-0.87)	0.28 (0-0.69)	0.07
Number of sedative infusions while on ECMO	2.5 (1.0-3.0)	2.0 (1.0-3.0)	0.71
Total propofol dose (mg/kg/ECMO hr)	0.77 (0.46-0.98)	0.48 (0.34-0.84)	0.37

Median (IQR) Only the first 20 days after ECMO cannulation included

RASS=Richmond Agitation Sedation Scale

Bohman JK, et al. J Cardiothorac Vasc Anesth. 2022;36:524-8.

Guideline Key Concepts

Routinely assessment for pain, agitation, and delirium

Consider pain as a source of agitation

Target light sedation (vs. deep sedation)

Use propofol or dexmedetomidine as preferred sedative over benzodiazepines

Preform rehabilitation or mobilization

Barr J, et al. Crit Care Med. 2013;41:263-306. Devlin JW, et al. Crit Care Med. 2018;46:e825-73.

- Requirements usually exceed standard doses
- Establish daily sedative goals with potential sedative reduction / interruption when clinically indicated
- Anticipate significant dose reduction at ECMO discontinuation
- Monitor for signs of delirium / withdrawal

Bridge to Transplantation

Photo courtesy of Daniel Brodie, MD

Bridge to Decision

- VV-ECMO is initiated
- Current analgesia and sedation:
 - Fentanyl 100 mcg/hr and propofol 40 mcg/kg/min
 - Current RASS -2; goal RASS -5, no pain documented

How can analgesia and sedation be optimized in this patient?

- 1. Double the dose of fentanyl, no change to propofol
- 2. Change propofol to a midazolam infusion, no change to fentanyl
- 3. Change fentanyl to a morphine infusion, no change to propofol
- 4. Change propofol to a midazolam infusion and fentanyl to a morphine infusion

Antimicrobials

Can population pharmacokinetics of antimicrobials be applied to all patients receiving ECMO?

Implications of Inappropriate Antimicrobial Dosing

- Therapeutic failures
- Toxicity
- Development of resistance

One Dose Does Not Fit All

- Prospective, multicenter, pharmacokinetic point-prevalence study of beta-lactams
- 68 ICUs and 361 critically ill patients

PK/PD data	Ampicillin (n=18)	Cefepime (n=14)	Piperacillin (n=109)	Meropenem (n=89)
50% <i>f</i> T _{>MIC} achieved	56%	79%	81%	95%
50% <i>f</i> T _{>4xMIC} achieved	28%	50%	49%	69%
100% <i>f</i> T _{>MIC} achieved	33%	79%	67%	70%
100% <i>f</i> T _{>4xMIC} achieved	22%	71%	30%	42%

 $fT_{>MIC}$ = free drug concentration above minimum inhibitory concentration of dosing interval

16% of patients treated for infections did not achieve 50% *f*T_{>MIC} and were 32% less likely to have a favorable outcome [OR 0.68 (95% CI 0.52-0.91); p=0.009]

Roberts JA, et al. Clin Infect Dis. 2014;58:1072-83.

Aminoglycosides

Hydrophilic, low protein binding

Concentration-dependent (C_{MAX}/MIC)

ECMO:

- ~40% of patients do not achieve adequate PK/PD targets
- Larger volume of distribution compared to patients not receiving ECMO
- Risk factors:
 - Lower body mass index
 - Positive 24 hour fluid balance
- Recommendations:
 - Use higher than recommended loading dose
 - Employ therapeutic drug monitoring to guide dosing

Touchard C, et al. Crit Care. 2018;22:199. Ruiz-Ramos J, et al. ASAIO J. 2018;64:686-8. Gelisse E, et al. Intensive Care Med. 2016;42:946-8.

Vancomycin Hydrophilic, moderate protein binding

Concentration-dependent with time (Area under the curve (AUC)/MIC)

ECMO:

- No difference in volume of distribution of clearance compared to patients not receiving ECMO
- Recommendations:
 - Use weight-based loading and maintenance dose for critically ill patients
 - Employ therapeutic drug monitoring to guide dosing

Donadello K, et al. Crit Care. 2014;22:632. Park SJ, et al. PLoS One. 2015;10:e0141016. Wu CC, et al. J Formos Med Assoc. 2016;115:560-70.

Beta-Lactam Antimicrobials

Hydrophilic, low-moderate protein binding

ECMO:

- Prospective case-controlled study¹
 - 86% of patients did not obtain a trough concentration of piperacillin above the target after the first dose
- Prospective observational study²
 - Significantly lower median serum concentrations of piperacillin and standard-dose meropenem in patients receiving ECMO

Beta-Lactam Antimicrobial Recommendations

- Use continuous infusions to optimize pharmacokinetic and pharmacodynamic parameters
- Employ therapeutic drug monitoring
 - Early detection of subtherapeutic concentrations
 - Decrease the risk of adverse events

Antimicrobial Management

- Couple source control with timely and appropriate antimicrobial administration
- Use published pharmacokinetic data in the critically ill to make dosage adjustments
- Employ therapeutic drug monitoring for dose adjustments

- 10 days after the initiation of VV-ECMO the patient develops septic shock from a ventilator-associated pneumonia
- Meropenem, vancomycin, and tobramycin are initiated

Which would be the most appropriate to consider?

- 1. Double the vancomycin loading dose
- Decrease tobramycin loading dose
- 3. Increase meropenem dose
- 4. Use doses from the package insert

What Changes Can Be Made?

Change the Tubing?

- Polyvinyl-chloride tubing may drive drug sequestration
- Change to silicone-caoutchouc mixture with less absorption?

Change the Drug?

Drug solubilized in the hydrophobic core

Unger JK et al. Biomaterials. 2001;22:2031-7.

Summary

- ECMO is an important device that can be used in appropriate patients for the management of cardiorespiratory failure
- The ECMO circuit influences pharmacokinetics of commonly used drugs
- Drug dosing recommendations for adult patients receiving ECMO are unlikely to be evidenced-based

ECMO in the Era of COVID-19: Optimizing Medication Management

Amy L. Dzierba, PharmD, FCCM, FCCP, BCCCP Clinical Pharmacist, Adult Critical Care Department of Pharmacy NewYork-Presbyterian Hospital Columbia University Irving Medical Center