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Learning Objectives

At the completion of this activity, learners will be able to: 

1. Describe potential uses for artificial intelligence in pharmacy 
practice. 

2. Compare approaches for training machine learning models. 

3. Assess challenges and limitations of artificial intelligence in 
clinical practice. 
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Predicting the 
future of
healthcare
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ASHP Foundation Pharmacy Forecast 2024

Health systems will embrace a “digital-first” approach to patient encounters (e.g., video primary care 
visits, telehealth, and remote patient monitoring) which will make patient access to virtual care universal.

Accelerating adoption of an advanced technologies (e.g, remote patient monitoring, artificial 
intelligence, data integration) will close the gap on health care disparities.

Health system ethics committees will have expertise that ensures the equitable application of artificial 
intelligence technology when used in patient care.

Am J Health Syst Pharm. 2024;81(2):5-36. doi: 10.1093/ajhp/zxad231. PMID: 38048298
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ASHP Foundation Pharmacy Forecast 2024

Am J Health Syst Pharm. 2024;81(2):5-36. doi: 10.1093/ajhp/zxad231. PMID: 38048298

State boards of pharmacy will develop regulations allowing the use of artificial intelligence or other 
technology in place of pharmacist order review and verification.

Integration of electronic health record data with clinical decision support algorithms will automate drug 
dosing adjustments (e.g., renal, weight-based, age-based dosing)
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What is “digital health”?

• An umbrella term for applying information and technology in 
healthcare to make a tangible difference in patient health 

• Examples:
• Wearable devices

• Mobile health (mHealth)

• Telehealth

• Remote patient monitoring

• Application of AI

• Etc…
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Human cognitive capacity is 7 ± 2

Adapted from William Stead
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AI = Augmented Intelligence

Fundamental Theorem of Informatics
Am. Med. Inform. Assoc. 2009;16(2):169-170. PMID:19074294
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What is AI?

• Artificial intelligence describes a computer system’s ability to 
perform a task that would normally require human cognition.

• Perception, language processing, learning, planning, problem solving, etc.

• General vs Narrow AI

• General AI is still a far-off reality

• Narrow AI

• Can do one well-defined task, but that’s it

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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History

1950s            1960s           1970s            1980s             1990s             2000s             2010s           2020s

Artificial Intelligence

Machine Learning

Deep Learning

Alan Turing 

“Turing Test”

Mark 1 Perceptron

Learned by trial 

and error
Winter of AI

IBM’s Deep Blue 
Computer wins 
at Chess

IBM’s Watson

Wins Jeopardy!

Apple launces

Siri

Term “AI” used
First chatbot 

ELIZA Expert rule-based 
systems:
MYCIN and EMYCIN

Patient intake

Mandy

Google’s 
AlphaGo and 
AlphaFold

GPTs

Chat-GPT
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GPT
Generative AI
Generative pre-trained transformers (GPT) for generating new content
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Basic AI (expert systems)

© 2021 Epic Systems Corporation. Used with permission

Medication alerts
Often lack ability to consider patient specific 
criteria “out of the box”

Custom alerts
More likely to consider patient specific factors
Example:  alert for ACE-I and ARN-I overlap 
that accounts for administration data 

Patient Risk/Scoring Tools
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Machine learning – Supervised

Features = input variables
Labels = the outcome to predict

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944

Data linked to the outcome of interest
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Machine learning – Supervised

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Machine learning – Supervised

Classification
Has condition or not

Regression
Predicting a number value

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Examples

• Prediction:
• Abnormal medication 

orders

• Adverse drug events

• Acute kidney injury 

• Readmissions

• Sepsis early detection

• Drug or glucose levels

• Etc.

• Image processing:
• Quality control and 

documentation

• Pill identification
• Highlight potential errors 

in verification

• Screening for disease 
(diabetic retinopathy, skin 
cancer, etc.)
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Know your labels

• External validation of a widely implemented proprietary sepsis prediction 
model in hospitalized patients

• Wong A, Otles E, Donnelly JP et al. JAMA Intern Med. 2021; 181(8): 1065-70.

• Model failed to identify two-thirds of sepsis patients

JAMA Intern Med. 2021; 181(8): 1065-70
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Know your labels

• External validation of a widely implemented proprietary sepsis 
prediction model in hospitalized patients

• Wong A, Otles E, Donnelly JP et al. JAMA Intern Med. 2021; 181(8): 1065-
70.

• Model failed to identify two-thirds of sepsis patients

• Vendor used ICD-9 codes for their model as the labels
• CDC and CMS don’t use billing codes for sepsis quality measures

• Also had different definitions for when a patient developed sepsis
• Vendor used encounter-level performance, whereas the study used 

prediction-level performance (alerts) where the outcome = “sepsis in the 
next x hours”

JAMA Intern Med. 2021; 181(8): 1065-70
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Machine learning – Unsupervised

No labels

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Machine learning – Unsupervised

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944



Applied Clinical Informatics

Examples

• Data analytics

• Natural language processing

• Auditing

• Drug diversion

• Cluster analysis

• Population identification (phenotypes)
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Others
• Semi-supervised

• Kind of a mix of supervised and unsupervised learning

• We have some examples (labels), but not a lot

• Reinforcement learning
• The computer makes decisions, then learns from those decisions

• Based on action and rewards

• Used for games. Playing against itself and learning from billions of 
decisions

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Examples

• Semi-supervised
• Data analytics

• Auditing and drug diversion

• Reinforcement
• Identifying ideal treatment pathways

• Mechanical ventilation

• Reinforcement Learning from Human Feedback (RLHF) (generative AI)
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Neural Networks

https://i.pinimg.com/474x/8a/5e/c5/8a5ec581436d07fe26ad8710f183331d.jpg

Nervous system processing (maybe?)
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Neural Network

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Deep learning

Am J Health Syst Pharm. 2020; 77(19): 1556-70. PMID: 32620944
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Examples

• Image processing

• Natural language 
processing

DALL-E 3
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Large Language Models (LLMs) - ChatGPT
• Generative Pre-trained Transformer (GPT)

Self-supervised
Unsupervised

Foundation model

Pre-training

Data
Tasks

Supervised adaptation
(fine-tuning) Answering questions

Sentiment analysis

Information extraction

Following instructions

Etc, etc.
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Token 
embeddings

Decoder 
stack

Token 
embeds

Hidden 
states

Next word 
prediction

…Prompt Output

Random 
selection

Natural Language Processing with Transformers (2022) Lewis Tunstall, Leandro von Werra, and Thomas Wolf

Large Language Model (LLM) overview
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https://alonsosilva-nexttokenprediction.hf.space/

Never gonna give you up, never gonna let you…
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Token 
embeddings

Decoder 
stack

Token 
embeds

Hidden 
states

Next word 
prediction

…Prompt Output

Random 
selection

Natural Language Processing with Transformers (2022) Lewis Tunstall, Leandro von Werra, and Thomas Wolf

How to improve the results?
Reinforcement Learning from Human Feedback (RLHF)

Prompt engineering
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Potential use cases

• Code generation

• Text summarization

• Text generation

• Conversational AI for patient support

• Speech recognition

• Image or text annotation

• Write clinic notes

• Writing a prior authorization letter, with supporting references

• Write notes to patients interpreting labs
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Considerations 
in 

healthcare



Applied Clinical Informatics

AI models will solve all our problems!

https://xkcd.com/1831/      Creative commons
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Truth

• Health care is incredibly complex
•“All models are wrong, but some are useful”

– George Box

• The ultimate decisions are in the hands of the 
patients and caregivers

• They have the additional context that is required and 
making these sometimes difficult decisions
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More than just a score…

• What are the next steps someone should take?

• What is the expected outcome or workflow?

• What factors went into producing the score?

• Models must be trained/calibrated on local data
• External validation

People – Process – Technology!



Applied Clinical Informatics

Model drift

• The performance of a model 
degrades over time as the 
environment changes

• Relationships between variables change 
over time

• The underlying data could change

• Clinical practice changes

• The model must be recalibrated

• Have a long-term maintenance plan
• Consider when to remove/retire the model

J Am Med Inform Assoc. 2017; 24(6): 1052-61 DALL-E 3
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AI hallucinations

AI Has a Hallucination Problem That's Proving Tough to Fix | WIRED

https://www.wired.com/story/ai-has-a-hallucination-problem-thats-proving-tough-to-fix/
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AI hallucinations

Dall-E 2. Image 

source: OpenAI

https://labs.openai.com/s/5GY0R4BA5jPn5YYC8eQnpSVW
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Large Language Models (LLMs) - ChatGPT

• AI hallucination

• A confident response by AI that is not true 
• Cannot be grounded on any data ever accessed or trained on

• Generates false information

• Predictive text

AI-generated suggestion for identifying immunocompromised patients: 

“add biologic agents, such as adalimumab, etanerfigut, and golimumab, 
which are used to treat autoimmune disorders.” 

J Am Med Inform Assoc. 2023. PMID:37087108
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Myth or fact??

Curtesy Yaa Kuma-Crystal
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More data => better AI!

Kylo Ren MORE Meme Generator - Imgflip

https://imgflip.com/memegenerator/214097341/Kylo-Ren-MORE
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Truth

• AI is only as good as the data it trains on or ingests

• Labeling large amounts of data is very difficult

• Beware of model bias (fairness metrics)
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Shortcuts in the training data

• Researchers developed a model to identify if cows were in the 
picture or not

Recognition in terra incognita. In Proceedings of the European 

conference on computer vision (ECCV) 2018. pp. 456-473

DALL-E 3 DALL-E 3 DALL-E 3 DALL-E 3
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In healthcare – AI for COVID-19 in CXR

Normal chest radiograph (male) | Radiology Case | Radiopaedia.org 
Creative Commons Nature Machine Intelligence. 2021;3(7):610-619. 

High performance at one hospital
Failed at another health system

Saliency maps showed that laterality 
markers were important features

https://radiopaedia.org/cases/normal-chest-radiograph-male-3?lang=us
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Model Bias

• Background
• Researchers discovered significant disparities in diagnostic accuracy for 

skin conditions across skin tones

• Less accuracy when diagnosing conditions in darker skin tones

• Researchers developed a deep learning model to provide decision support 
and enhance accuracy, particularly for darker skin tones

• The model was tested with dermatologist and primary care providers (PCPs)

Nat Med. 2024;30(2):573-583. PMID:38317019
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Model Bias

• The model successfully improved accuracy for both 
dermatologists and PCPs

• Dermatologists saw a 33% improvement in diagnostic accuracy

• PCPs experienced an impressive 69% improvement

• Impact on disparities
• Disparities persisted among dermatologists across skin tones

• Surprisingly, disparities across skin tones increased by 5% for PCPs

Nat Med. 2024;30(2):573-583. PMID:38317019
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AI Recognition of Patient Race in Imaging

• Deep learning models detecting race from medical images
• X-ray, CT, and mammography from various body sites

• Chest, spine, breasts, lungs, and hand 

• Model predicted self-reported race with AUC 0.90
• Attempted to control for BMI, disease distribution, breast density, etc.

• Then corrupted, cropped, and noised the images

• Model could still detect race in images when experts couldn’t

Lancet Digit Health. 2022;4(6):e406-e414. PMID:35568690
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Healthcare Data is Biased

• Researchers used a commercially available model to identify 
patients with the greatest care needs for referral to care 
management programs

• At the same risk score, Black patients had:
• 26% more chronic illnesses

• More uncontrolled hypertension and higher SBP

• Higher HbA1c values

• Higher serum creatinine levels

• Higher LDL levels

Science. 2019;366(6464):447-453. PMID:31649194
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Healthcare Data is Biased

• Sex and gender bias

• Differences in physiological markers and disease prevalence

• Cardiovascular disorders, cancer, autoimmunity, diabetes, etc.

• Men and women respond differently to treatments

• i.e. statins, ACE inhibitors, beta-blockers, etc.

• Differences in data representation

• i.e. coronary heart disease is the leading cause of death in women, but the 
majority (67%) of patients in clinical trials are men.

NPJ Digit Med. 2020;3:81. PMID:32529043
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Will AI will take over my job?

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://counterinformationblog.blogspot.com/2019/12/will-artificial-intelligence-destroy-us.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Truth: AI = “Augmented Intelligence”

• Pharmacists excel at:
• Common sense

• Compassion

• Context

• Dilemmas

• Morals

• Imagination

• Abstraction

• Generalization

• AI systems excel at:
• Pattern identification

• Endless capacity

• Natural language processing

• Locating knowledge

• Machine learning

• Minimizing bias
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“The rise of machines has to be accompanied 
by heightened humaneness — with more 
time together, passion and tenderness 
— to make the ‘care’ in healthcare real”
     - Eric Topol

Deep

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (2019)
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• Some AI models have shown improvements 
in mortality and patient outcomes

• Many have not, and most fail to make it to 
clinical practice

• Some AI models have even increased 
mortality!

• Model for predicting AKI

Balancing excitement and safety

BMJ. 2021;372:m4786. PMID:33461986
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Analogy to medications

JAMIA Open. 2020;3(3):326-331. PMID:33215066

Phase 0 – Needs assessment

Phase 1 – Algorithm training

Phase 2 – Evaluation by end users

Phase 3 – Clinical trial

Phase 4 – Post-deployment 

                   surveillance

DALL-E 3
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Regulations

• FDA - Software as a Medical Device (SaMD)
• “Software intended to be used for one or more medical purposes that 

perform these purposes without being part of a hardware medical 
device."

• Good Machine Learning Practice (GMLP)
• Jointly by USA FDA, Health Canada, and the United Kingdom’s 

Medicines and Healthcare products Regulatory Agency (MHRA) 

• 10 guiding principles

Software as a Medical Device (SaMD). Updated December 4, 2018. 
https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd
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The best way 
to predict 
the future is 
to build it!

DALL-E 3
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Building the future: Key considerations

• How does the use of ML/AI affect pharmacy practice?
• Examine Board of Pharmacy rules

• Are there things that can be safely delegated to ML/AI models?

• Humanize care and address burnout
• AI to bring joy to healthcare work, not do more complicated tasks

• Assure that “normal” is still in the human workflow

• Focus on the human-AI team
• “Augmented intelligence”
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Building the future: Key considerations

• Project identification and prioritization
• Where should resources focus?

• Pharmacists understand the workflows

• Assure AI in healthcare is safe, efficacious, and equitable
• Support equity and fairness metrics

• ML/AI (and healthcare) are rapidly evolving!
• Consider maintenance and updating policies
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Key Takeaways

1. AI describes a computer system’s ability to perform a task that 
would normally require human cognition.

Example: perception, learning, vision, etc.

Very powerful tool, but also has limitations

2. Humans + machines

Focus on the power of the combination!
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Applied Clinical Informatics
vu.edu/ms-aci
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