# Mu Over Opioids, Non-Opioid Pain Management Coming Through!

Matthew Li, PharmD, MHA, BCPS, BCCCP

Clinical Pharmacy Specialist – Trauma, Surgical, Burn ICU

Clinical Assistant Professor of Surgery - New York Medical College

Westchester Medical Center Valhalla, NY

## Disclosure

- The following individual has nothing to disclose concerning possible conflicts of interests related to this presentation
- The unapproved/investigational use of commercial products will be discussed during the educational activity

H-CI

• Review the pathophysiology and etiology of pain in the intensive care unit (ICU)

Highlight

 Highlight the efficacy, safety, and role of opioids in the ICU

Objectives

Evaluate

• Evaluate the pharmacodynamics, pharmacokinetics, and supporting evidence of non-opioid therapies

Apply

• Apply principles of ICU pain management to a patient case

 Review the pathophysiology and etiology of pain in the intensive care unit (ICU)

Highlight

• Highlight the efficacy, safety, and role of opioids in the ICU

Objectives

Evaluate

• Evaluate the pharmacodynamics, pharmacokinetics, and supporting evidence of non-opioid therapies

Apply

Apply principles of ICU pain management to a patient case

 Review the pathophysiology and etiology of pain in the intensive care unit (ICU)

Highlight

 Highlight the efficacy, safety, and role of opioids in the ICU

Objectives

Evaluate

• Evaluate the pharmacodynamics, pharmacokinetics, and supporting evidence of non-opioid therapies

Apply

• Apply principles of ICU pain management to a patient case

 Review the pathophysiology and etiology of pain in the intensive care unit (ICU)

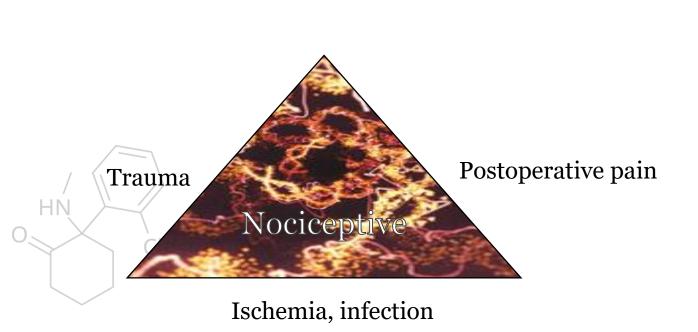
Highlight

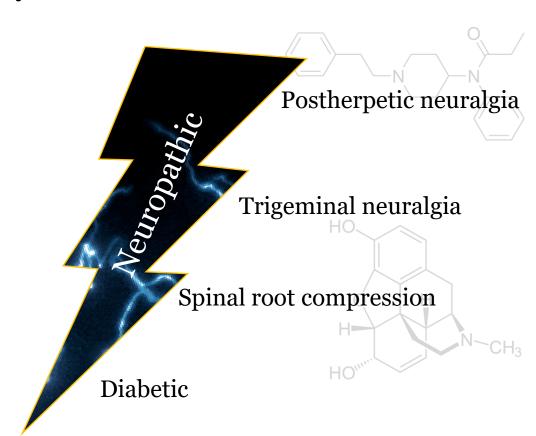
 Highlight the efficacy, safety, and role of opioids in the ICU

Evaluate

• Evaluate the pharmacodynamics, pharmacokinetics, and supporting evidence of non-opioid therapies

Apply


• Apply principles of ICU pain management to a patient case


Objectives

## What is Pain?

"An unpleasant sensory and emotional experience associated with actual or resembling that associated with, actual or potential tissue damage"

- International Association for the Study of Pain (2020)





## Pain: Why Does it Matter?

H N N

Inadequate management delays return to work, lowers quality of life, and increases PTSD risk

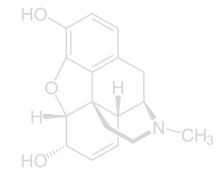
#### **Untreated Pain**

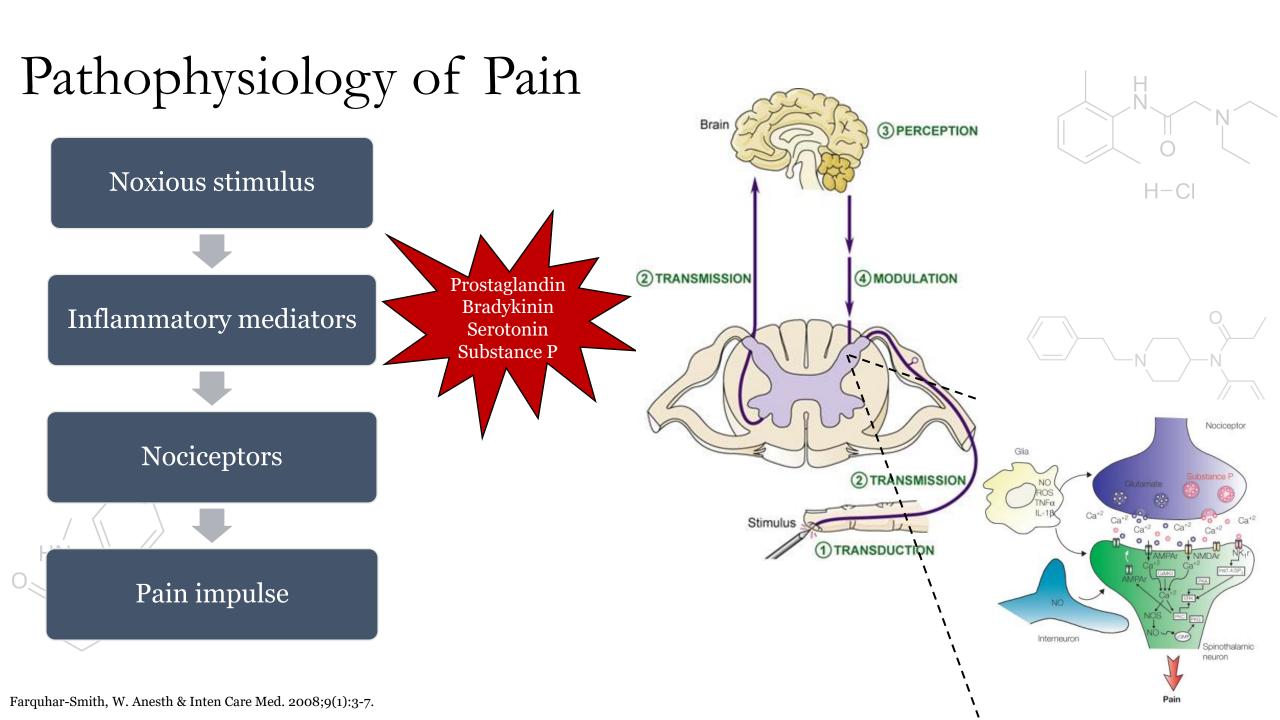


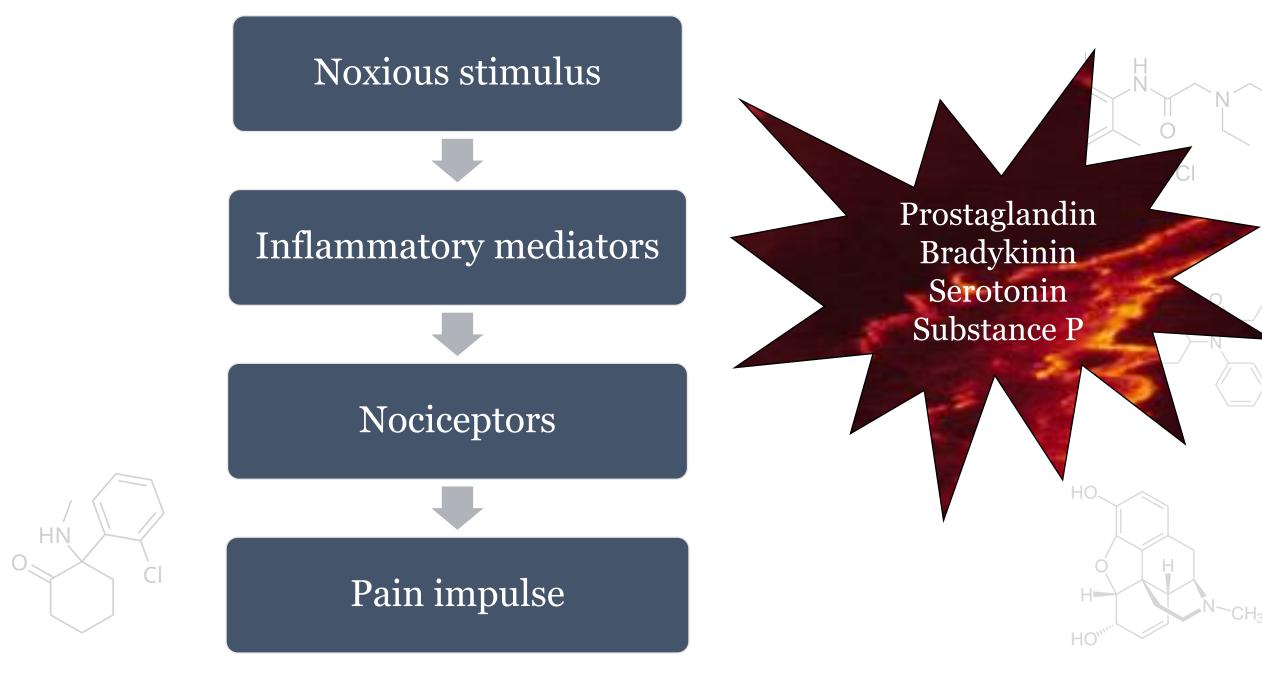
Decreased respiratory function

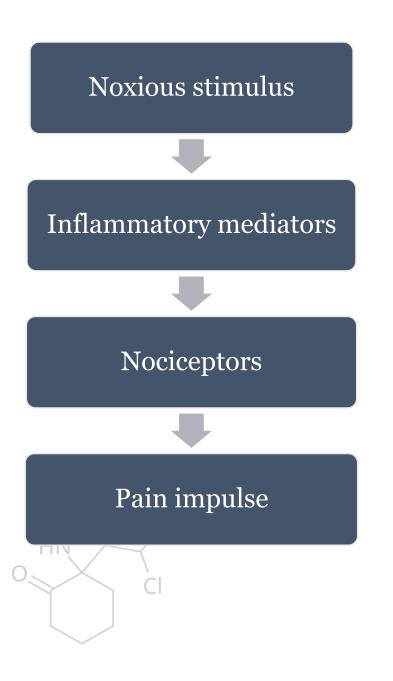


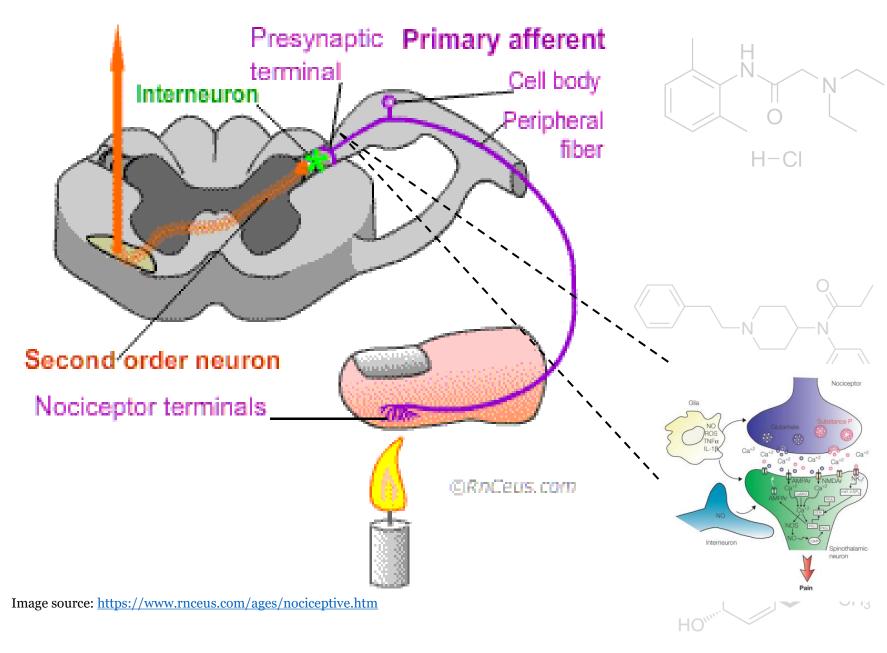
Increased metabolic demand

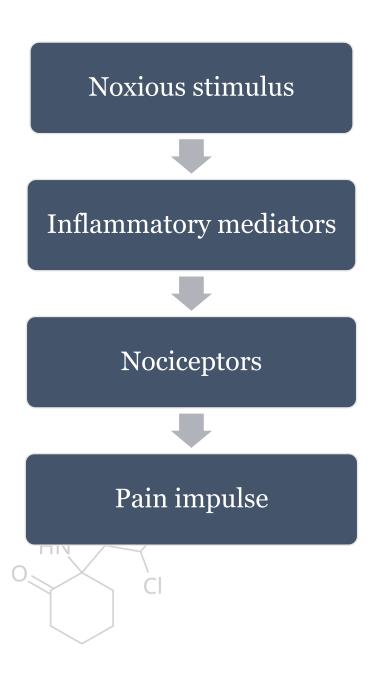


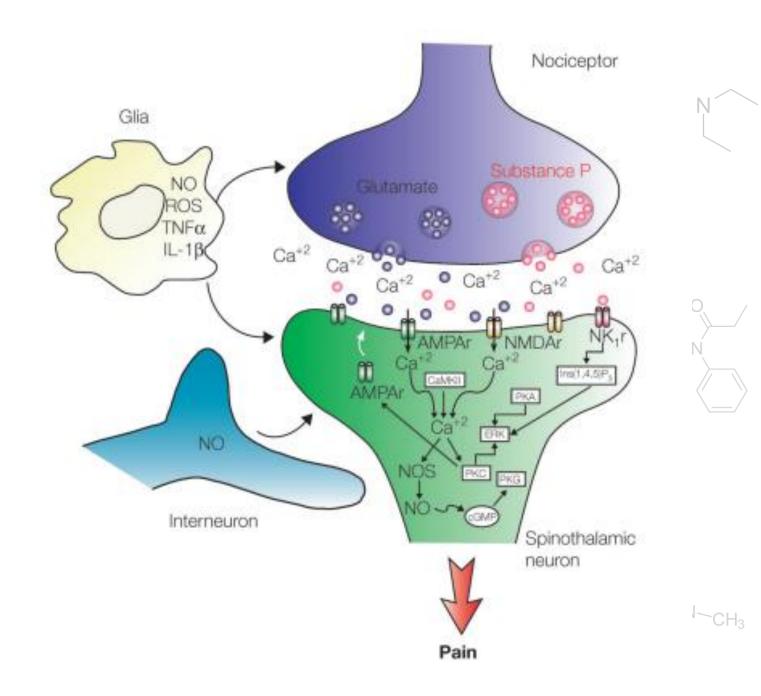


Impaired wound healing



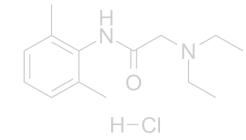


Immunosuppression



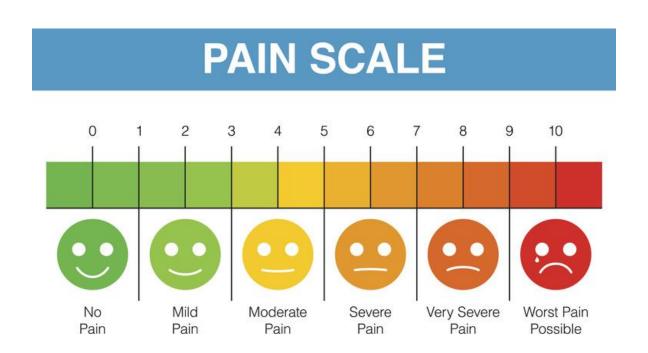



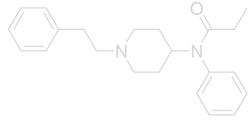



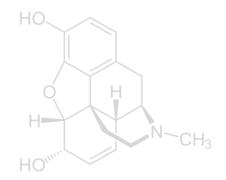


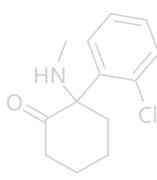


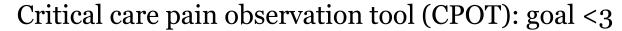





# Goal of Pain Management




# Achieve <u>a tolerable pain level</u> that allows the patient to function

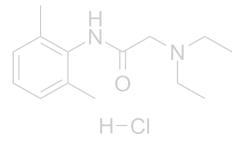






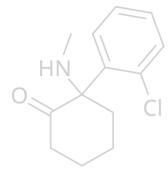






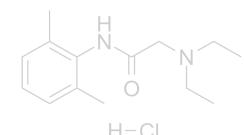

Vocalization/ Compliance Body movements

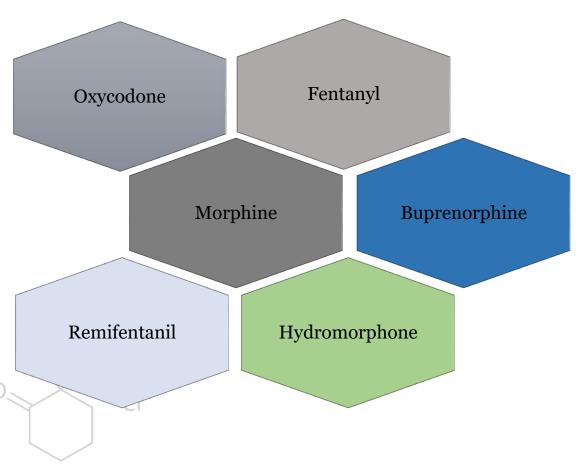

Facial expression

Muscle tension



### Behavioral pain scale (BPS): goal < 6


| Indicator              | Score | Description                                          |
|------------------------|-------|------------------------------------------------------|
| Facial expressions     | 1     | Relaxed                                              |
|                        | 2     | Partially tightened                                  |
|                        | 3     | Fully tightened                                      |
|                        | 4     | Grimacing                                            |
| Upper limb movements   | 1     | No movement                                          |
|                        | 2     | Partially bent                                       |
|                        | 3     | Fully bent with finger extension                     |
|                        | 4     | Permanently retracted                                |
| Compliance with        | 1     | Tolerating movement                                  |
| mechanical ventilation | 2     | Coughing but tolerating ventilation most of the time |
|                        | 3     | Fighting ventilator                                  |
|                        | 4     | Unable to control ventilation                        |
| Total score            | of 12 |                                                      |



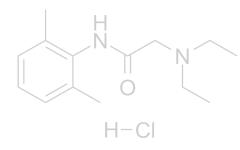

Gomarverdi S, et al. Iran J Nurs Midwifery Res. 2019 Mar-Apr;24(2):151-155

# Opioids

Mainstay of therapy for ICU pain management






MOA: Binding of an opioid agonist to a G-protein-coupled opioid receptor causes decreased cAMP, hyperpolarization, and recued neurotransmitter release

| Receptor  | Action                                                                |
|-----------|-----------------------------------------------------------------------|
| Mu (M)    | Analgesia, dependence, euphoria, respiratory depression, constipation |
| Kappa (K) | Hyperalgesia, diuresis, dysphoria, negative inotropy/chronotropy      |
| Delta (Δ) | Analgesia, constipation                                               |

Devlin J, et al. Crit Care Med. 2018 Sep;46(9):e825-e873. Toubia T, et al. Clin Obstet Gynecol. 2019 Mar;62(1):3-10.

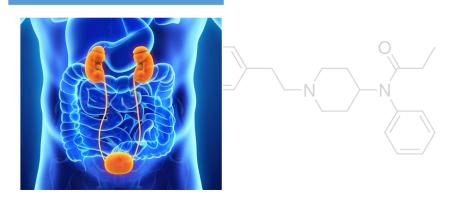
# Multimodal Approach

Adverse effects of opioids

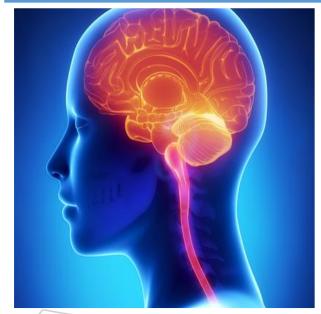




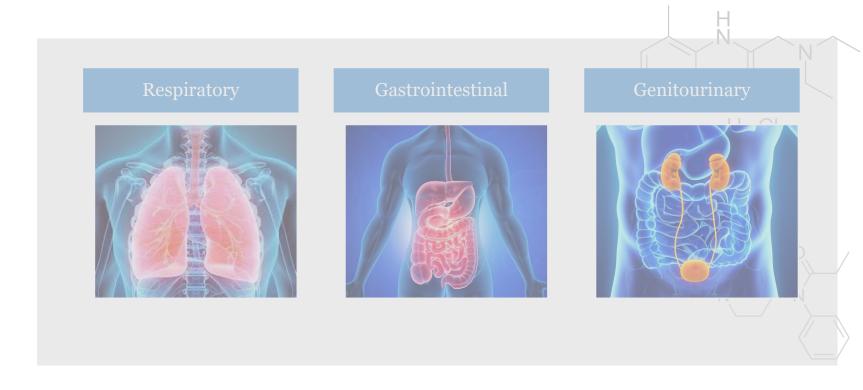


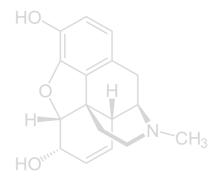

Respiratory

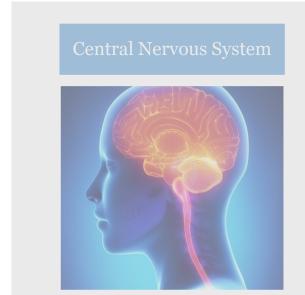



Gastrointestinal




Genitourinary



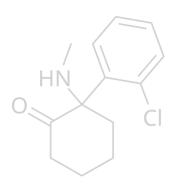


### Central Nervous System

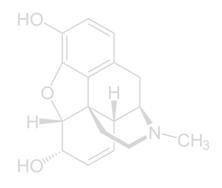


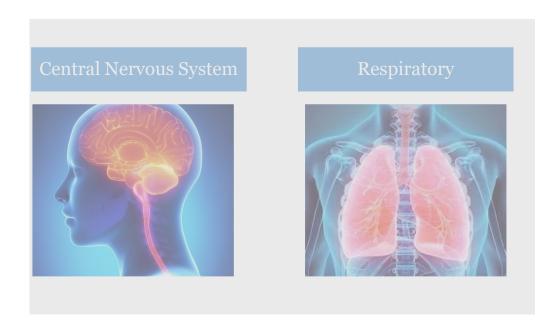
Sedation Tolerance Dependence







## Respiratory

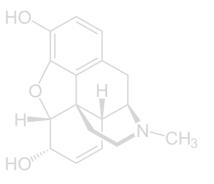


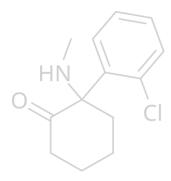

Respiratory Depression









## Gastrointestinal



Nausea Constipation





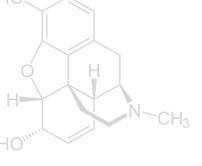


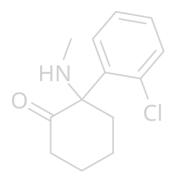





















#### Central Nervous System



Sedation Tolerance Dependence

#### Respiratory

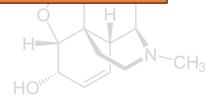


Respiratory Depression

#### Gastrointestinal

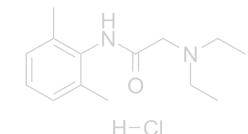


Nausea Constipation


#### Genitourinary



**Urinary Retention** 


Combination of opioid and non-opioid agents with different mechanisms of action

Goal: limit opioid exposure without sacrificing patient comfort



H-CI

# Multimodal Analgesia











**The Intensive Care Professionals** 





# Multimodal Analgesia in Trauma

HNON

- Retrospective pre-post cohort of trauma ICU patients (N = 127)
- · Implementation of multimodal pain order set reduced cumulative opioid dose received
- No difference in pain scores at day 5, discharge, ICU LOS, hospital LOS

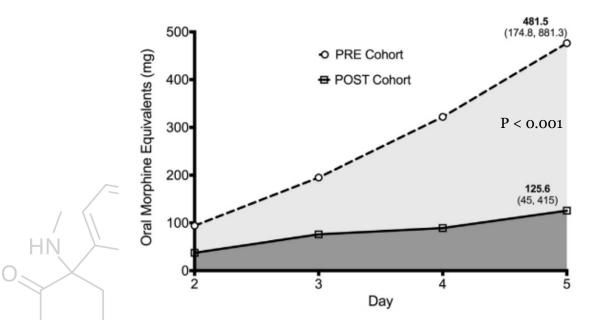
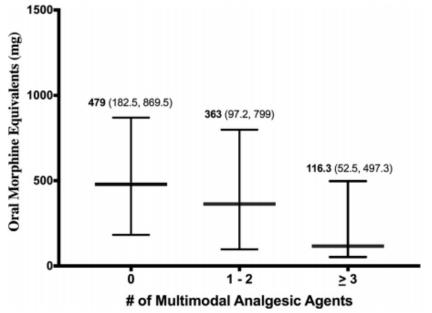
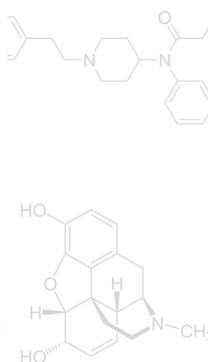
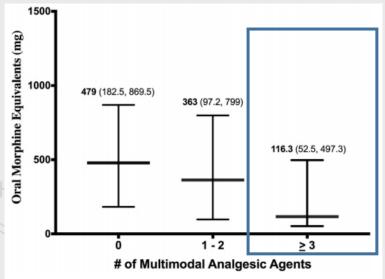
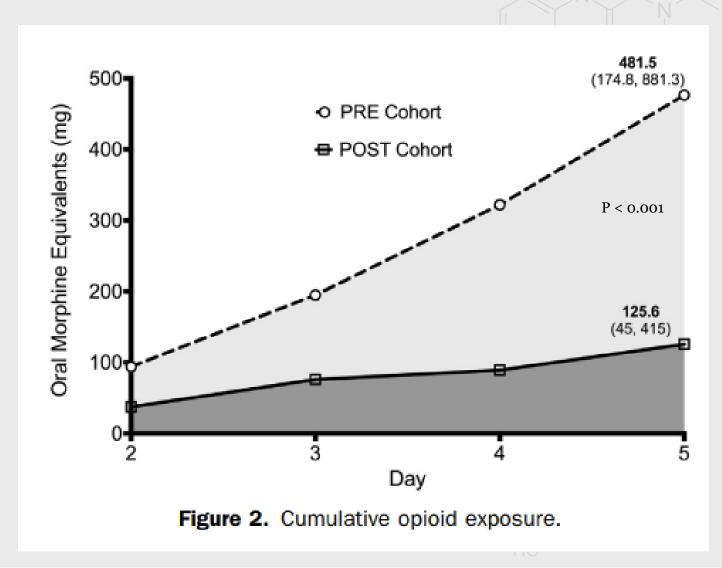





Figure 2. Cumulative opioid exposure.

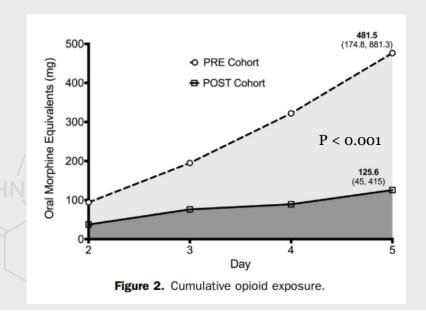



**Figure 3.** Cumulative opioid exposure vs number of multimodal agents.




# Multimodal Analgesia in Trauma

- Retrospective pre-post cohort of trauma ICU patients (N = 127)
- Implementation of multimodal pain order set reduced cumulative opioid dose received
- No difference in pain scores at day 5, discharge, ICU LOS, hospital LOS




**Figure 3.** Cumulative opioid exposure vs number of multimodal agents.



# Multimodal Analgesia in Trauma

- Retrospective pre-post cohort of trauma ICU patients (N = 127)
- Implementation of multimodal pain order set reduced cumulative opioid dose received
- No difference in pain scores at day 5, discharge, ICU LOS, hospital LOS



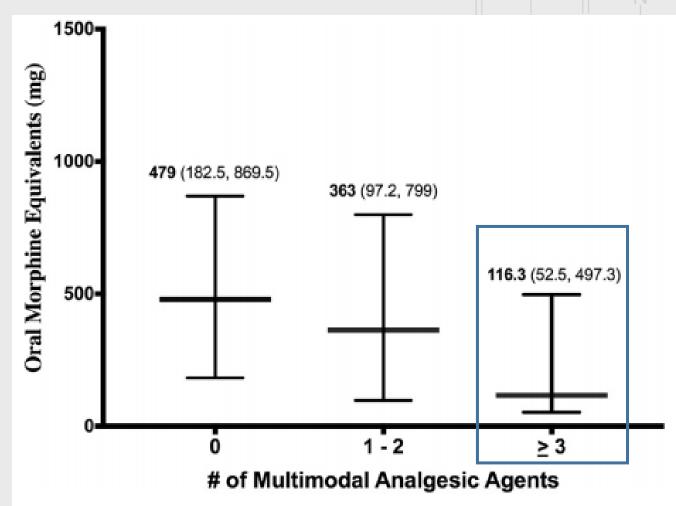
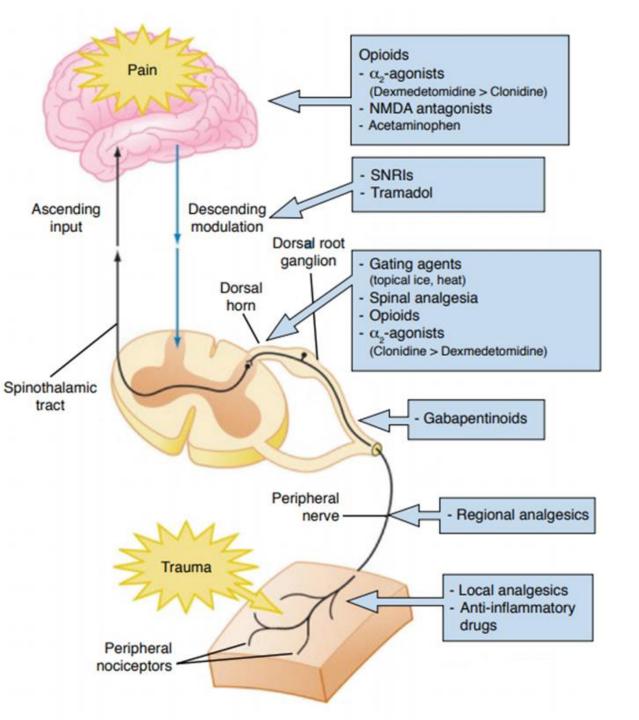
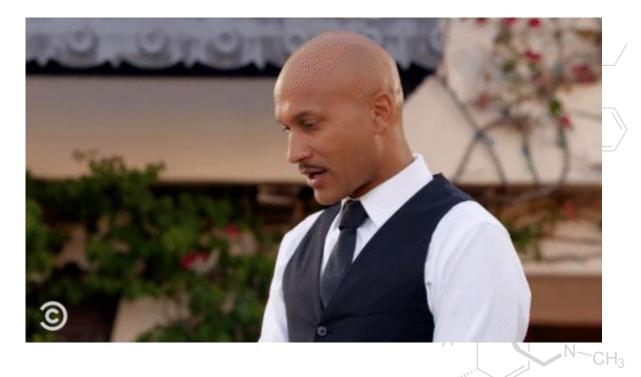
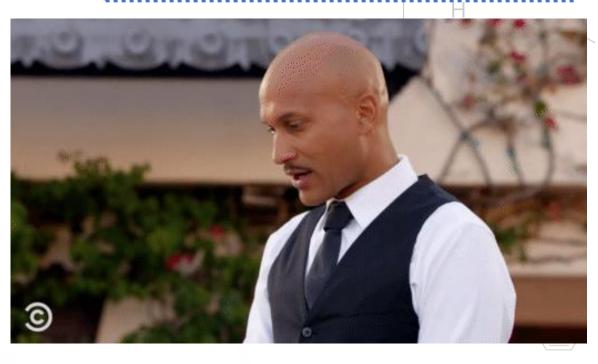





Figure 3. Cumulative opioid exposure vs number of multimodal agents.




# On Today's Menu



Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.

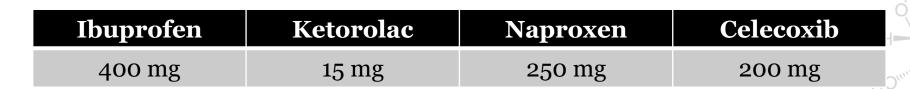
## Pain NMDA antagonists - Acetaminophen Tramadol Descending Ascending input Dorsal root Dorsal horn tract Trauma Peripheral nociceptors

# On Today's Menu



- Local analgesics
- Anti-inflammatory drugs

## **NSAIDs**




## Antipyretic, analgesia, anti-inflammatory

Effective at reducing pain in emergency and post-surgical populations

Reduces opioid requirements and opioid-related complications

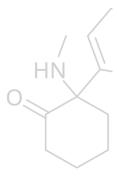
### Mitigate surgical stress



### **NSAIDs**

Antipyretic, analgesia, anti-inflammatory

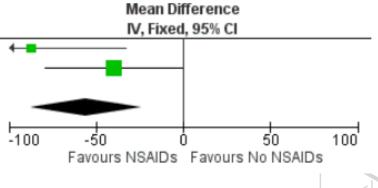
Effective at reducing pain in emergency and postsurgical populations

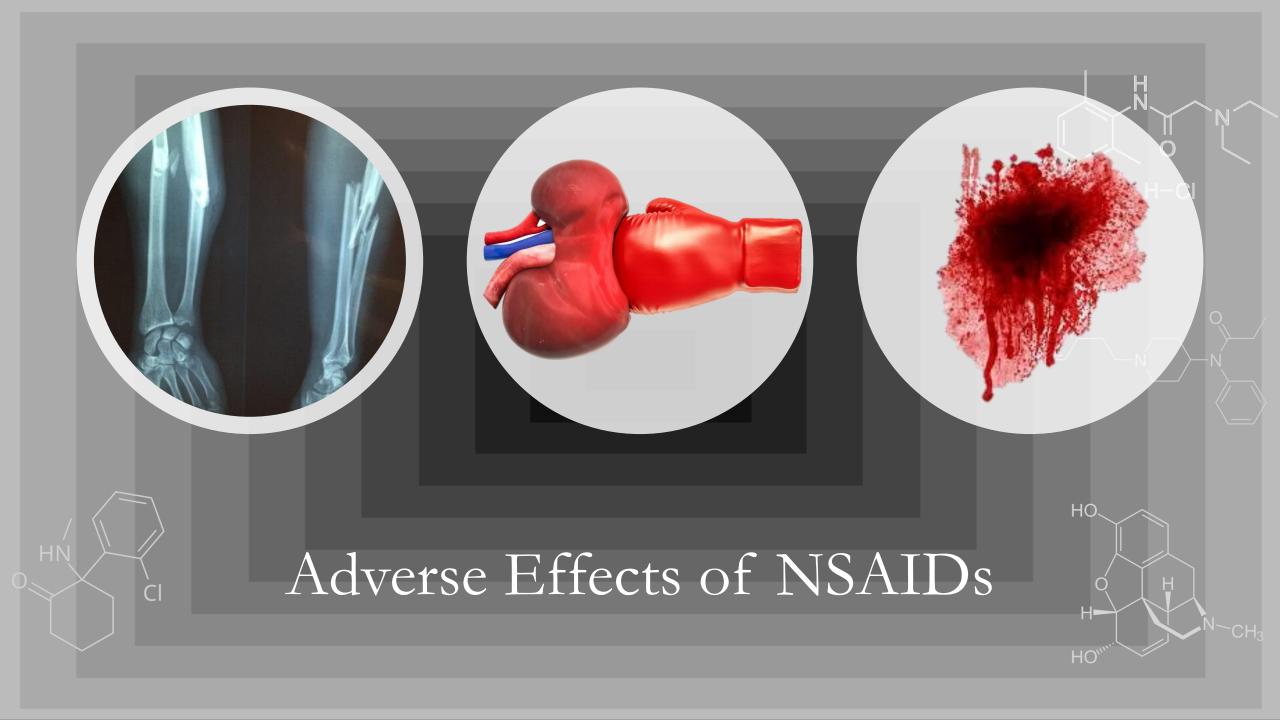

Reduces opioid requirements and opioid-related complications

UEVID.

26% decrease in opioid consumption

30% decreased odds of nausea and vomiting


47% decreased odds of sedation




|   |                                   | IN IN    | SAID   |         | M                     | NOAID |       |        | Mean Difference          |   |
|---|-----------------------------------|----------|--------|---------|-----------------------|-------|-------|--------|--------------------------|---|
|   | Study or Subgroup                 | Mean     | SD     | Total   | Mean                  | SD    | Total | Weight | IV, Fixed, 95% CI        |   |
| _ | Bayouth 2013                      | 82.6     | 54.3   | 21      | 169.8                 | 115.3 | 21    | 34.2%  | -87.20 [-141.71, -32.69] | + |
|   | McDonald 2019                     | 105      | 88.5   | 46      | 144.8                 | 104.3 | 47    | 65.8%  | -39.80 [-79.08, -0.52]   |   |
|   | Total (95% CI)                    |          |        | 67      |                       |       | 68    | 100.0% | -56.00 [-87.87, -24.13]  |   |
|   | Heterogeneity: Chi <sup>2</sup> = | 1.91, df | = 1 (P | = 0.17) | ; I <sup>2</sup> = 48 | 96    |       |        |                          | Н |
|   | Test for overall effect:          | Z = 3.44 | (P = 0 | 0.0006) |                       |       |       |        |                          | - |

No NEAID

Moan Difference





Trauma Surgery & Acute Care Open

Efficacy and safety of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of acute pain after orthopedic trauma: a practice management guideline from the Eastern Association for the Surgery of Trauma and the Orthopedic Trauma Association



|                                   | NSA      | ID              | No N        | SAID      |                | Odds Ratio          | Odd                     | ls Ratio                                         |      |
|-----------------------------------|----------|-----------------|-------------|-----------|----------------|---------------------|-------------------------|--------------------------------------------------|------|
| Study or Subgroup                 | Events   | Total           | Events      | Total     | Weight         | M-H, Random, 95% CI | M-H, Ran                | dom, 95% CI                                      |      |
| Burd 2003                         | 11       | 38              | 5           | 74        | 6.2%           | 5.62 [1.79, 17.70]  |                         |                                                  |      |
| George 2020                       | 456      | 25001           | 4188        | 279720    | 25.8%          | 1.22 [1.11, 1.35]   |                         | •                                                |      |
| Hunter 2019                       | 3        | 98              | 2           | 210       | 2.9%           | 3.28 [0.54, 19.98]  | _                       | <del>                                     </del> |      |
| McDonald 2019                     | 10       | 58              | 13          | 56        | 8.5%           | 0.69 [0.27, 1.73]   |                         | <del> </del>                                     |      |
| Moed 1994                         | 0        | 16              | 0           | 19        |                | Not estimable       |                         |                                                  |      |
| Sagi 2014                         | 10       | 59              | 4           | 21        | 5.2%           | 0.87 [0.24, 3.13]   |                         | •                                                |      |
| Tucker 2020                       | 392      | 2570            | 1179        | 15119     | 25.4%          | 2.13 [1.88, 2.41]   |                         | •                                                |      |
| Zura 2016                         | 661      | 23847           | 7276        | 286483    | 26.0%          | 1.09 [1.01, 1.19]   |                         | •                                                |      |
| Total (95% CI)                    |          | 51687           |             | 581702    | 100.0%         | 1.45 [1.04, 2.01]   |                         | •                                                |      |
| Total events                      | 1543     |                 | 12667       |           |                |                     |                         |                                                  |      |
| Heterogeneity: Tau <sup>2</sup> = | 0.11; Ch | 2 – <u>90 5</u> | 5, df = 6 ( | P < 0.000 | $01); I^2 = 9$ | 3%                  | 04 04                   | 1 10                                             | 400  |
| Test for overall effect           | Z = 2.22 | (P = 0.03)      | 3)          |           |                |                     | 01 0.1<br>Favours NSAID | 1 10<br>s Favours No NSAID                       | 100° |

Non-union rate: 2.99% (NSAID) vs. 2.18% (no NSAID), OR 1.45, 95% CI [1.04 – 2.01]

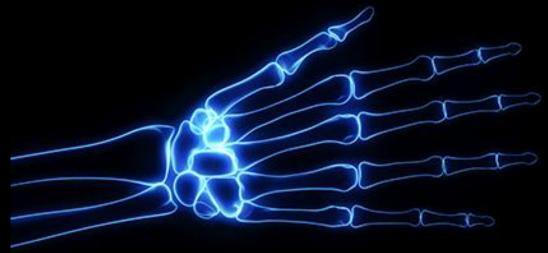
# Risk of Nonunion with Nonselective NSAIDs, COX-2 Inhibitors, and Opioids

Michael D. George, MD, MSCE, Joshua F. Baker, MD, MSCE, Charles E. Leonard, PharmD, MSCE, Samir Mehta, MD, Todd A. Miano, PharmD, MSCE, and Sean Hennessy, PharmD, PhD

• Nonunion diagnosis within 1 year: 0.9% (2,996)

Filling prescription for NSAID **prior** to fracture increased risk for nonunion

#### Cannot Rule Out

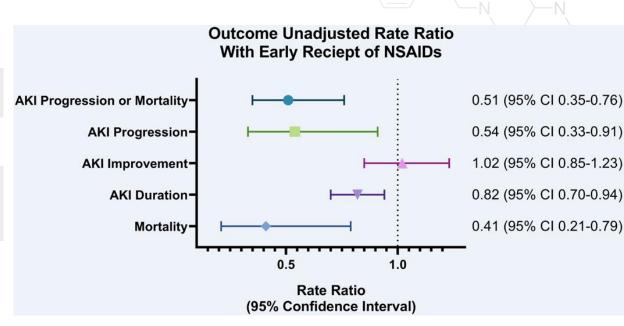

- High dose effect
- Prolonged duration effect

|                      |         |                    | piagnosis and<br>re to Treat | Nonunion Diagnosis |                  |  |  |  |
|----------------------|---------|--------------------|------------------------------|--------------------|------------------|--|--|--|
|                      | No.     | Nonunion (no. [%]) | aOR (95% CI)                 | Nonunion (no. [%]) | aOR* (95% CI)    |  |  |  |
| NSAID/COX-2 analysis |         |                    |                              |                    |                  |  |  |  |
| Neither              | 279,720 | 2,250 (0.8%)       | Reference                    | 4,188 (1.5%)       | Reference        |  |  |  |
| Nonselective NSAID   | 22,590  | 236 (1.0%)         | 1.07 (0.93-1.23)             | 387 (1.7%)         | 1.08 (0.96-1.20) |  |  |  |
| COX-2                | 2,411   | 51 (2.1%)          | 1.84 (1.38-2.46)             | 69 (2.9%)          | 1.48 (1.16-1.89) |  |  |  |

In patients with traumatic fractures, NSAIDs appear to reduce post-trauma pain, reduce the need for opioids and have a small effect on non-union. We conditionally recommend the use of NSAIDs in patients suffering from traumatic fractures as the benefit appears to outweigh the small potential risks.

- Eastern Association for the Surgery of Trauma

- Orthopedic Trauma Association






# Do Early Non-Steroidal Anti-Inflammatory Drugs for Analgesia Worsen Acute Kidney Injury in Critically III Trauma Patients? An Inverse Probability of Treatment Weighted Analysis

Gabrielle E Hatton, MD<sup>a,b,d</sup>, Cynthia Bell, MS<sup>c</sup>, Shuyan Wei, MD<sup>a,b,d</sup>, Charles E Wade, PhD<sup>a,b</sup>, Lillian S Kao, MD MS<sup>a,b,d</sup>, John A Harvin, MD MS<sup>a,b,d</sup>

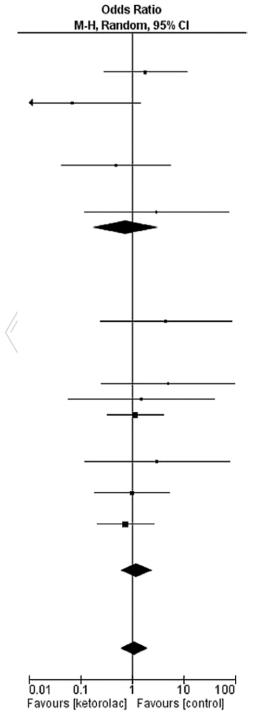
| ALL PATIENTS (N=2,340)                 | NO EARLY<br>NSAIDS<br>(N=2,072) | EARLY<br>NSAIDS<br>(N=268) | P<br>VALUE |
|----------------------------------------|---------------------------------|----------------------------|------------|
| Progression or<br>Mortality within 7 d | 382 (18%)                       | 25 (9%)                    | <0.001     |
| AKI Progression                        | 221 (11%)                       | 15 (6%)                    | 0.01       |
| AKI Improvement                        | 673 (33%)                       | 87 (33%)                   | 1.0        |
| AKI Duration                           | o (0–1)<br>Mean 1.0             | o (0–1)<br>Mean o.8        | 0.05       |
| Mortality                              | 138 (9%)                        | 10 (4%)                    | 0.006      |



### Ketorolac Does Not Increase Perioperative Bleeding: A Meta-Analysis of Randomized **Controlled Trials**



Ryan M. Gobble, MD, Han L. T. Hoang, MD, Bart Kachniarz, BA, Dennis P. Orgill, MD, PHD


Postoperative bleeding: 2.5% (ketorolac) vs. 2.1% (control), P = 0.72

No difference in low-dose vs. high-dose groups

Total OR 95% CI: **1.12** [**0.61**, **2.06**]

Superior pain control with ketorolac vs. placebo or acetaminophen



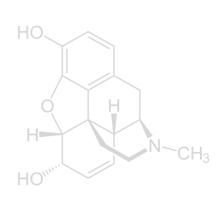


Gobble RM, et al. Plast Reconstr Surg. 2014 Mar;133(3):741-755.

Conrad KA, et al. Clin Pharmacol Ther. 1988;43:542-546.

Ketorolac Does Not Increase Perioperative Bleeding: A Meta-Analysis of Randomized Controlled Trials

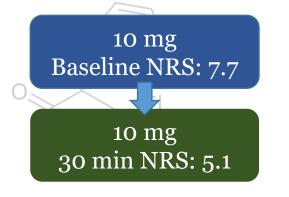
Ryan M. Gobble, MD, Han L. T. Hoang, MD, Bart Kachniarz, BA, Dennis P. Orgill, MD, PHD

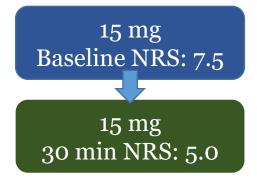

Postoperative bleeding: 2.5% (ketorolac) vs. 2.1% (control), P = 0.72

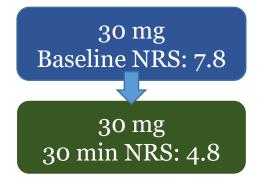
No difference in low-dose vs. high-dose groups

Total OR 95% CI: **1.12 [0.61, 2.06]** 

Superior pain control with ketorolac vs. placebo or acetaminophen

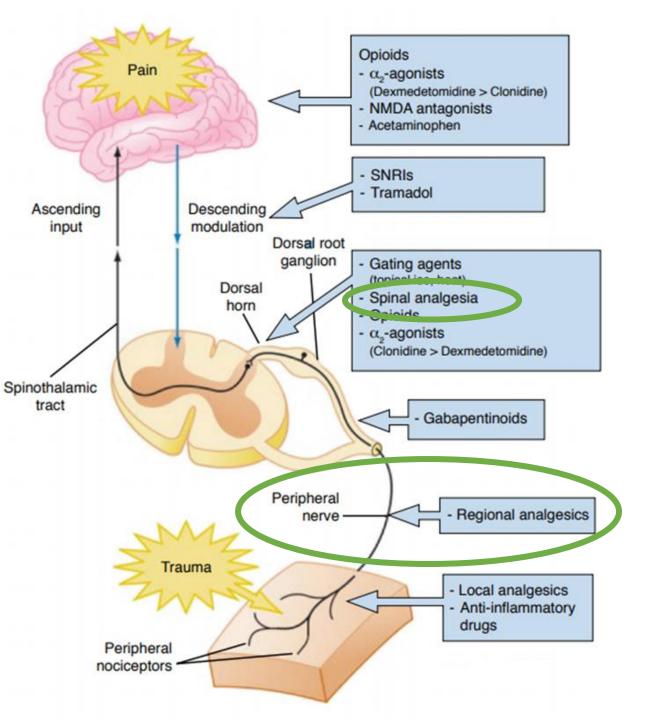

After 30 mg IM ketorolac Q6H x 5 days
Bleed time prolonged from 4.9 min to 7.8 min
No increase in clinically significant bleeding





### Comparison of Intravenous Ketorolac at Three Single-Dose Regimens for Treating Acute Pain in the Emergency Department: A Randomized Controlled Trial

Sergey Motov, MD\*; Matthew Yasavolian, MD; Antonios Likourezos, MA, MPH; Illya Pushkar, MPH; Rukhsana Hossain, MPH; Jefferson Drapkin, BS; Victor Cohen, PharmD; Nicholas Filk, PharmD; Andrew Smith, PharmD; Felix Huang, MD; Bradley Rockoff, MD; Peter Homel, PhD; Christian Fromm, MD

- IV ketorolac 10, 15, and 30 mg
- N = 240 (80 each dose group)
- No difference in numeric pain scale at baseline or at 30 minutes
- Similar rates of rescue medication and adverse events

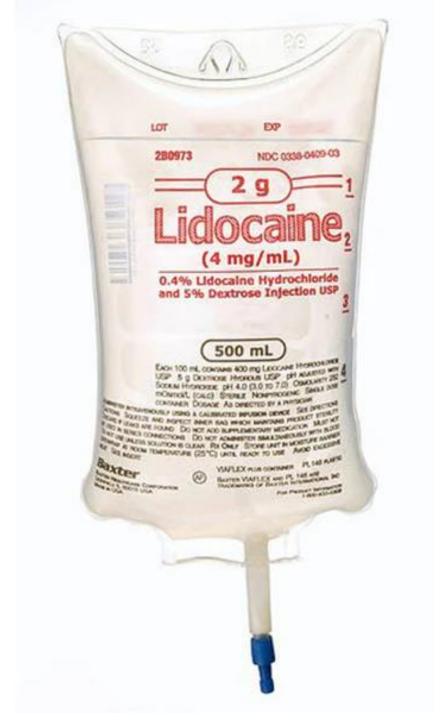







**Table 4.** Common adverse effects across the 3 ketorolac dose groups.

|                 | Ketorolac Group (%) |           |           |  |
|-----------------|---------------------|-----------|-----------|--|
| Adverse Effects | 10 mg               | 15 mg     | 30 mg     |  |
| Dizziness       | 14 (17.5)           | 16 (20.0) | 12 (15.0) |  |
| Nausea          | 9 (11.3)            | 11 (13.8) | 8 (10.0)  |  |
| Headache        | 8 (10.0)            | 2 (2.5)   | 3 (3.8)   |  |
| Itching         | 0                   | 1 (1.3)   | 1 (1.3)   |  |
| Flushing        | 0                   | 1 (1.3)   | 0         |  |

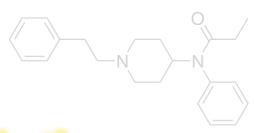



# On Today's Menu

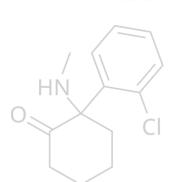


Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.






### Lidocaine IV

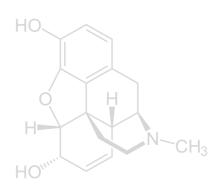

50 mL Mantiple-dose
Lidocaine HCI
2% Injection, USP
1000 mg/50 mL
(20 mg/mL)
L0T 09+061-15



- Anti-nociceptive, anti-hyperalgesic, anti-inflammatory
- MOA: block Na channels, prevents over-sensitization of CNS
- Indications: severe neuropathic and opioid refractory pain



### **Absolute Contraindications**




Conduction blocks Hypersensitivity Pregnancy



### **Relative Contraindications**

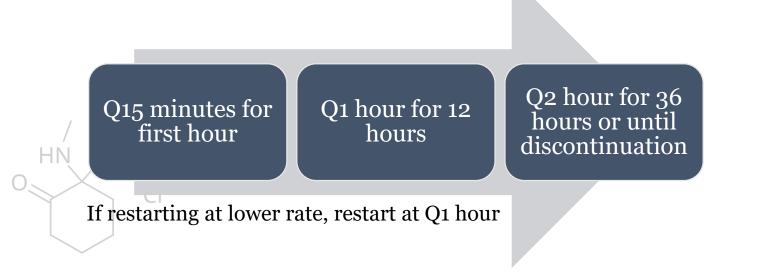
CYP1A2 or 3A4 inducers Renal dysfunction Hepatic dysfunction



### Lidocaine IV

- Heterogeneous evidence: Overall low quality
  - Abdominal
  - Renal colic
  - Neuropathic
  - Musculoskeletal
  - Migraine

# OHN


### **Benefits**

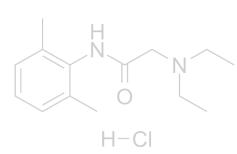
Reduces PONV Reduces constipation Improves analgesia

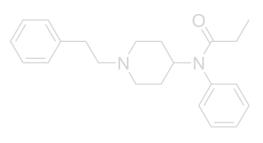


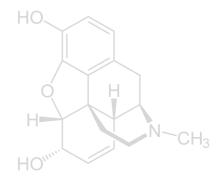
### Lidocaine IV

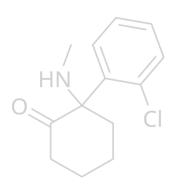
- 1.5 mg/kg IBW IV infusion (load) over 10 minutes
  - Max 100 mg
- 1 mg/kg/h IBW (maintenance)
- Total duration: 24-48 hours
- Sample Monitoring (vitals, EKG, pulse oximetry)

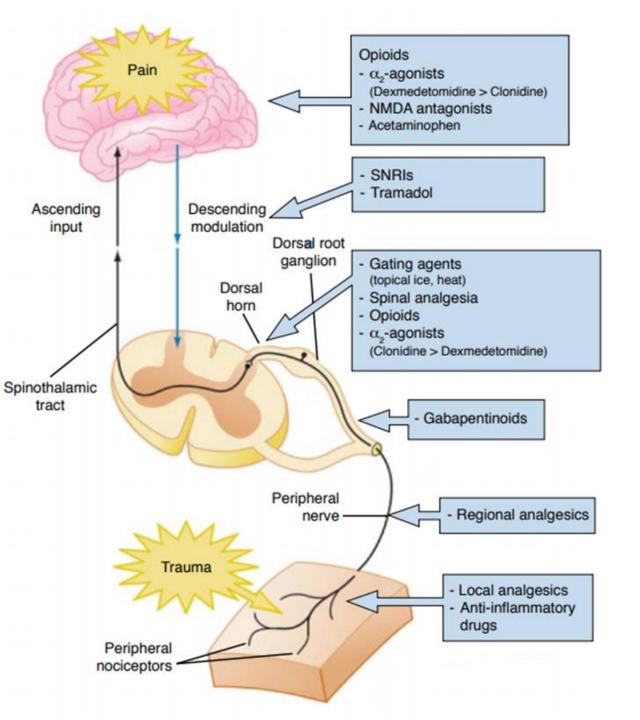




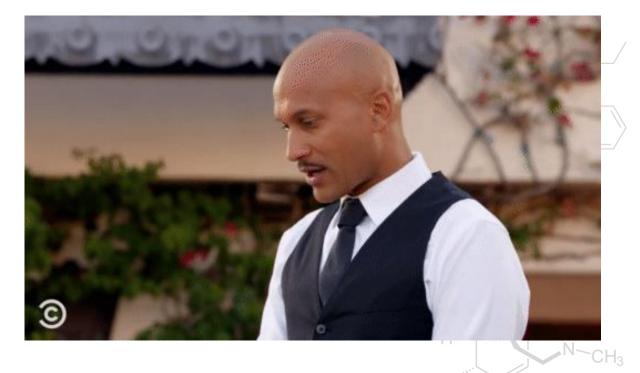


### Lidocaine IV: Additional Considerations


- Evaluate for contraindications
- Use in accordance with approved hospital policy or protocol
- Ensure standards for smart IV pump technology are established
- Avoid concomitant use of local anesthetics



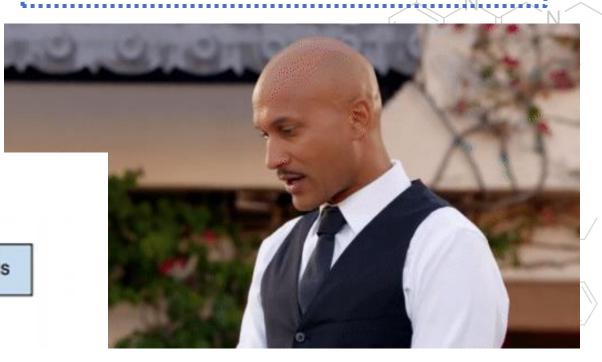


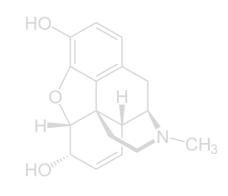











# On Today's Menu




Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.

### Opioids Pain - α,-agonists (Dexmedetomidine > Clonidine) - NMDA antagonists - Acetaminophen **SNRIs** Tramadol Ascending Descending modulation input Dorsal root Spinothalamic tract Gabapentinoids Peripheral Regional analgesics nerve Trauma Local analgesics - Anti-inflammatory drugs Peripheral nociceptors

# On Today's Menu





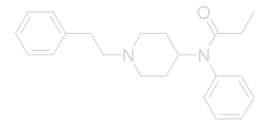
Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.

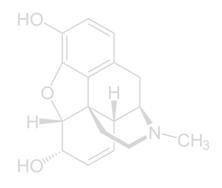
# Gabapentinoids

|              | Gabapentin                                                              | Pregabalin                                                                            |  |
|--------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Mechanism    | Bind voltage-gated calcium channel modulating release of excitatory neu | s possessing the alpha-2-delta-1 subunit in CNS, arotransmitters                      |  |
| Absorption   | Limited to small intestine Highly variable Non-linear pharmacokinetics  | Small intestine and ascending colon  Linear pharmacokinetics                          |  |
| Peak         | 3 hours                                                                 | 1 hour                                                                                |  |
| Distribution | o.8 L/kg                                                                | o.5 L/kg                                                                              |  |
| Interactions | Not metabolized by CYP enzymes                                          |                                                                                       |  |
| Excretion    | Renal                                                                   |                                                                                       |  |
| Efficacy     |                                                                         | Increased binding affinity for alpha-2-delta  More potent (~2.4x) in neuropathic pain |  |
| Safety       | Respiratory depression (use con-                                        | comitant opioids and benzodiazepines with caution)                                    |  |

Effect of Perioperative Pregabalin on Postoperative Quality of Recovery in Patients Undergoing Off-Pump Coronary Artery Bypass Grafting (OPCABG): A Prospective, Randomized, Double-Blind Trial

Deepak Prakash Borde, MD, DNB, FCA, FTEE △ ☑ • Savani Sameer Futane, DNB, PDCC • Balaji Asegaonkar, MD, DNB • ... Manish Puranik, MS, MCh • Antony George, MD, DM • Shreedhar Joshi, MD, DM • Show all authors


- Assessed quality of recovery via postoperative quality of recovery (QoR-40) questionnaire
  - Baseline and 24 hours post extubation
- N = 71 (37 pregabalin, 34 control)


One-time dose (1 hour before surgery)

Two days (After extubation)

Pregabalin 150 mg

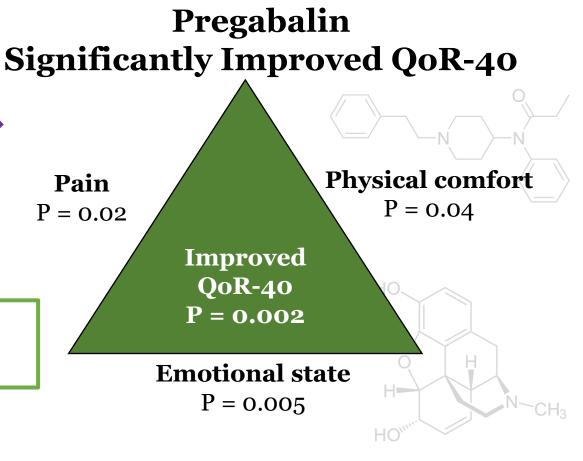
Pregabalin 75 mg Q12H





Effect of Perioperative Pregabalin on Postoperative Quality of Recovery in Patients Undergoing Off-Pump Coronary Artery Bypass Grafting (OPCABG): A Prospective, Randomized, Double-Blind Trial

Deepak Prakash Borde, MD, DNB, FCA, FTEE A ☑ • Savani Sameer Futane, DNB, PDCC • Balaji Asegaonkar, MD, DNB • ... Manish Puranik, MS, MCh • Antony George, MD, DM • Shreedhar Joshi, MD, DM • Show all authors

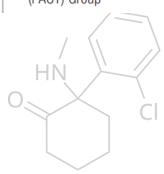

One-time dose (1 hour before surgery)

Two days (After extubation)

Pregabalin 150 mg

Pregabalin 75 mg Q12H

Decreased need for rescue analgesia Increased dizziness vs. control (1 vs. 5, P = 0.01)




### **ANESTHESIOLOGY**

# Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain

A Systematic Review and Meta-analysis

Michael Verret, M.D., M.Sc., François Lauzier, M.D., M.Sc., Ryan Zarychanski, M.D., M.Sc., Caroline Perron, M.Sc., Xavier Savard, M.D. candidate, Anne-Marie Pinard, M.D., M.Sc., Guillaume Leblanc, M.D., M.Sc., Marie-Joëlle Cossi, Ph.D., Xavier Neveu, M.Sc., Alexis F. Turgeon, M.D., M.Sc., and the Canadian Perioperative Anesthesia Clinical Trials (PACT) Group\*



### 281 trials (N = 24,682)

# Lower postoperative pain intensity

6, 12, 24, and 48 hours

- Did not meet threshold for clinical significance\*
- Met statistical significance

Less opioid use

• Mean difference: -7.9 mg IV morphine, 95% CI [-8.82 to -6.98]

Less postoperative nausea/vomiting

• RR 0.77; 95% CI [0.72 to 0.82]

### Gabapentinoids:

- Administered before surgery (71% trials)
- Administered before and after surgery (25% trials)
- Single dose (68% trials)

# Skeletal Muscle Relaxants: Methocarbamol

### Skeletal Muscle Relaxants: Methocarbamol

- H
- MOA: direct CNS depression; no direct effects on skeletal muscle
- Available IM, IV, PO

Efficacy of Methocarbamol for Acute Pain Management in Young Adults With Traumatic Rib Fractures

Annals of Pharmacotherapy I–6
© The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1060028020964796
journals.sagepub.com/home/aop

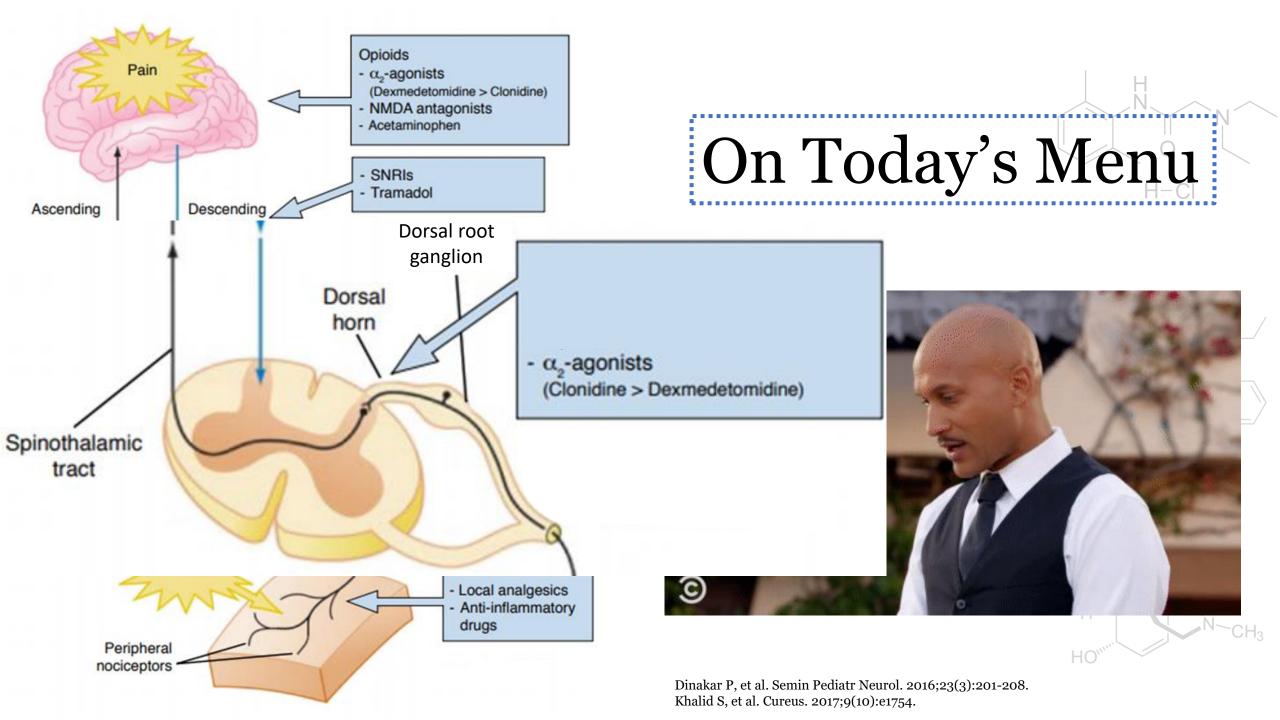
Lindsay P. Deloney, PharmD, BCPS<sup>1</sup>, Melanie Smith Condeni, PharmD, BCPS, BCCCP<sup>1</sup>, Cassandra Carter, PharmD<sup>1</sup>, Alicia Privette, MD, FACS<sup>1</sup>, Stuart Leon, MD<sup>1</sup>, and Evert A. Eriksson, MD, FACS<sup>1</sup>



N = 50 (22 pre-protocol, 28 post-protocol)

Ages 18-39 years

3 or more rib fractures


Dosing: 500 mg Q6H – 1500 mg Q6H

Use associated with lower median cumulative opioids (219 vs. 337 mg OME, P=0.01)

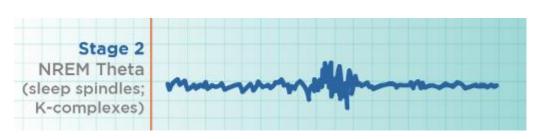
Decreased LOS (3 vs. 4 days, P=0.03)

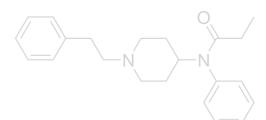
No difference in PNA incidence





### Dexmedetomidine


HNON


H-CI

#### **Mechanism**

Selective binding to alpha-2A receptors in CNS, which inhibits adenyl cyclase, reducing levels of adenosine monophosphate and leading to **hyperpolarization of noradrenergic neurons** 

- Negative feedback loop
- Attenuates sympathetic response
- Mimics physiologic stage 2 sleep





### **Considerations**

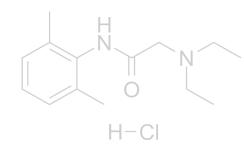
- Withdrawal from alpha-2 upregulation (30%)
  - Conflicting evidence to indicate if duration, max/median doses, or weaning prior to discontinuation affect this
  - Doses > 0.8 mcg/kg/h



Alpha-2: alpha-1 selectivity

- Dexmedetomidine 1620:1
- Clonidine 220:1




### Dexmedetomidine in Enhanced Recovery After Surgery (ERAS) Protocols for Postoperative Pain

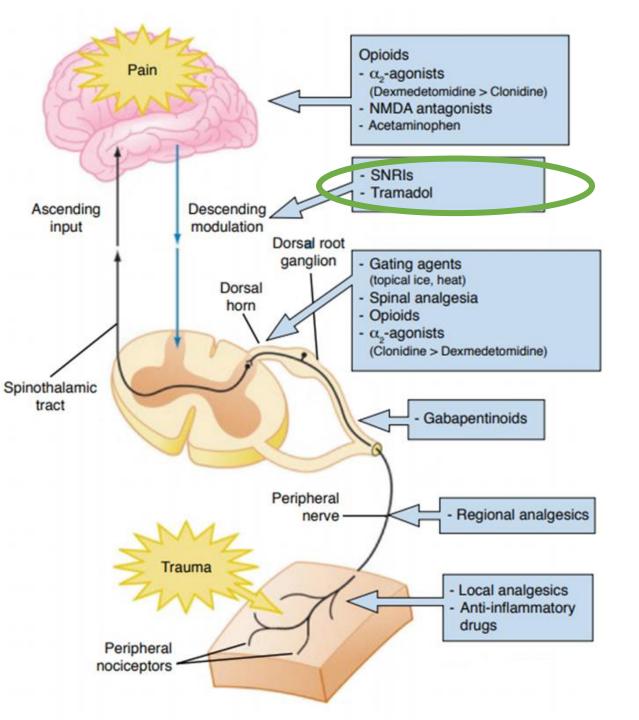
Alan David Kaye<sup>1</sup> • David J. Chernobylsky<sup>2</sup> • Pankaj Thakur<sup>3</sup> • Harish Siddaiah<sup>3</sup> • Rachel J. Kaye<sup>4</sup> • Lauren K. Eng<sup>2</sup> • Monica W. Harbell<sup>5</sup> • Jared Lajaunie<sup>6</sup> • Elyse M. Cornett<sup>3</sup>

### **Dexmedetomidine**

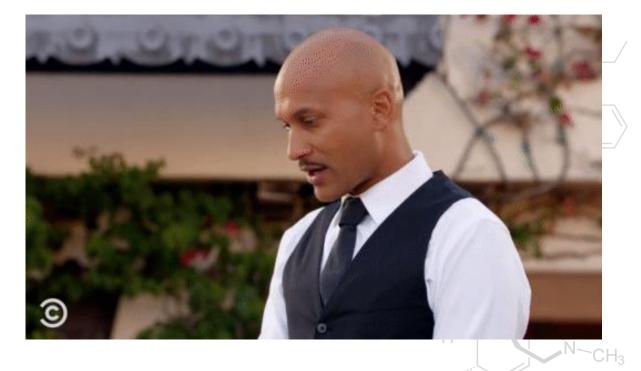
- Reduces opioid consumption by 30% at 24 hours post-operatively
- Reduces pain intensity
- Decreases postoperative nausea and vomiting
- No effect on recovery time
- Useful adjunct in regional anesthesia

### Future of Dexmedetomidine




# Drug Fever?

Compared with standard of care, dexmedetomidine is associated with greater incidence of temperatures greater than 38.3C (43.3% vs. 32.7%) or 39C (19.4% vs. 12.5%)


### Alternative Routes: PCA, Sublingual

| Effectiveness     |                  |                      | Adverse reactions        |             |             | Inflamma | itory levels |
|-------------------|------------------|----------------------|--------------------------|-------------|-------------|----------|--------------|
| Analgesic effects | Sedative effects | Patient satisfaction | Nausea vomiting Pruritus | Bradycardia | Hypotension | IL-6     | TNF-α        |
|                   |                  | <b>4</b>             |                          | <b>+</b>    |             |          |              |



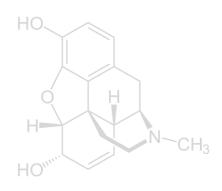


# On Today's Menu

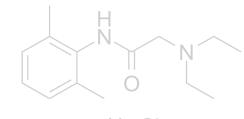


Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.

Serotonin-Norepinephrine Reuptake Inhibitors


• Duloxetine, milnacipran, desvenlafaxine, venlafaxine, tramadol

• ADR: bleeding, serotonin syndrome


• Inconsistent results to benefit <u>routinely</u> as part of multimodal analgesia regimen



|         | Inhibits Presynaptic<br>Neuronal Reuptake<br>of Serotonin    | Direct Serotonin<br>Receptor Agonist | Inhibits Serotonin<br>Metabolism |
|---------|--------------------------------------------------------------|--------------------------------------|----------------------------------|
| );<br>( | Cocaine, meperidine,<br>dextromethorphan, St.<br>John's Wort | Fentanyl, triptans,<br>metaxalone    | Monoamine oxidase<br>inhibitors  |



# TramaDONT

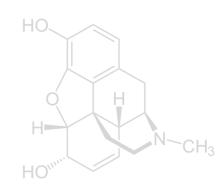





"This patient's pain is severe, acetaminophen isn't enough"

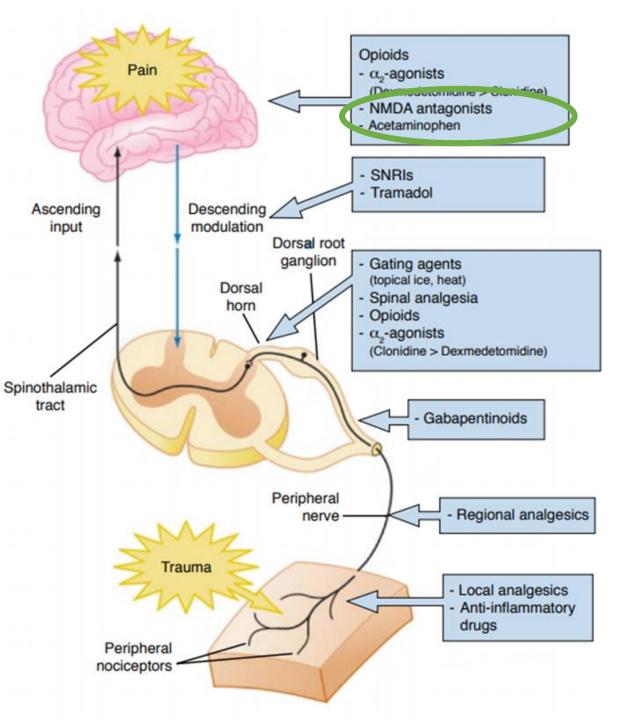
It's an SNRI (prodrug).

"It's opioid sparing"

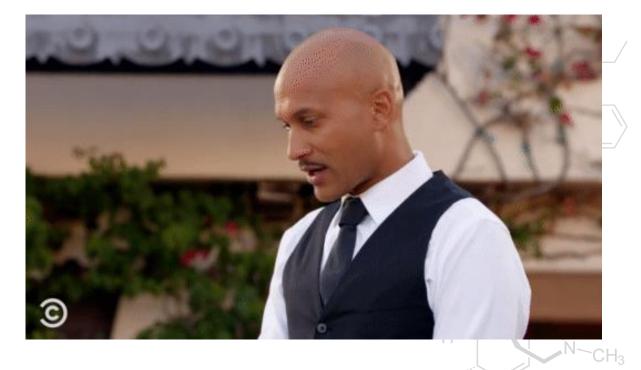

But it's a μ-opioid receptor agonist

"This trauma patient looks uncomfortable"




It can lower the seizure threshold, not great for their TBI

Desmetramadol mu-opioid agonist




Tramadol

(serotonergic)



# On Today's Menu



Dinakar P, et al. Semin Pediatr Neurol. 2016;23(3):201-208. Khalid S, et al. Cureus. 2017;9(10):e1754.

# IV Acetaminophen



"You want to make a pharmacist mad? Ask for IV Tylenol"

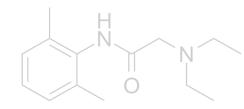
# Review of Intravenous Acetaminophen for Analgesia in the Postoperative Setting

Danielle M. Tompkins, PharmD, BCCCP<sup>1,2</sup>, Arielle DiPasquale, PharmDc<sup>1</sup>, Michelle Segovia, PharmDc<sup>1</sup>, and Stephen M. Cohn, MD, FACS<sup>3</sup> The American Surgeon
2021, Vol. 0(0) 1–14
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permission
DOI: 10.1177/000313482198905
journals.sagepub.com/home/asu

\$SAGE

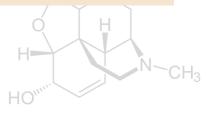
H-CI

IV APAP inferior to NSAIDs for analgesia after bariatric surgery


No difference compared to oral APAP or NSAIDs in abdominal, gynecologic, genitourinary, orthopedic, or renal surgery

Conflicting results in neurological or cardiac surgery

Beneficial PK profile did not translate into improved clinical outcomes


No benefit of IV over PO or rectal APAP

# Average Cost Comparison



| Medication                  | Cost per dose <sup>a</sup>      | Cost per 24 hours <sup>b</sup> |
|-----------------------------|---------------------------------|--------------------------------|
| Acetaminophen (PO)          | \$0.01 per 325 mg tablet        | \$0.12                         |
| Acetaminophen (suppository) | \$0.66 per 650 mg suppository   | \$2.64                         |
| Acetaminophen (IV)          | \$31.72 per 1000 mg/100 mL vial | \$126.88                       |
| Ibuprofen (PO)              | \$.29 per 600 mg tablet         | \$1.16                         |
| Ketorolac (IV)              | \$1.04 per 30 mg vial           | \$4.16                         |
| Tramadol (PO)               | \$.80 per 50 mg tablet          | \$3.20                         |
| Oxycodone (PO)              | \$.39 per 5 mg tablet           | \$1.56                         |
| Morphine (IV)               | \$2.47 per 2 mg/mL vial         | \$9.88                         |
| Hydromorphone (IV)          | \$4.98 per 0.5 mg/0.5 mL vial   | \$19.92                        |

<sup>&</sup>lt;sup>a</sup>Pricing based on average wholesale price.



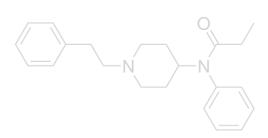
<sup>&</sup>lt;sup>b</sup>Cost per 24 h based on average dose scheduled every 6 hours.

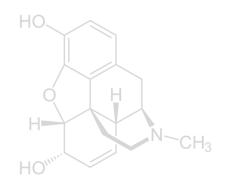


### Ketamine

# KETAMINE FOR EVERYTHING

### MOA: NMDA antagonist


• Hypnotic, amnestic, bronchodilator, antidepressant, analgesic

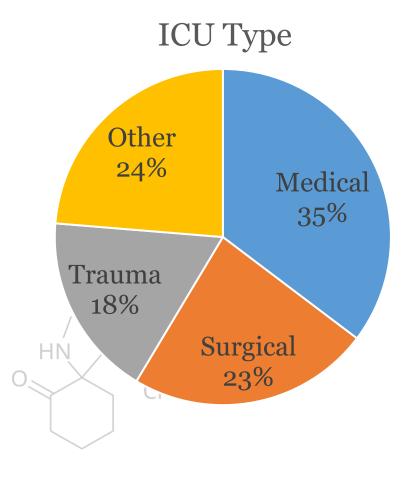

### Dose-dependent effects

- Pain (low-dose): 0.1- 0.3 mg/kg/h
- Sedation (moderate-dose): 0.5 1.5 mg/kg/h
- Amnestic (high-dose): up to 7.5 mg/kg/h

### Adverse effects

- Laryngospasm
- Increased blood pressure and heart rate
- Cardiac decompensation
- Emergence reactions










# Multicenter Retrospective Review of Ketamine Use in the ICU

• Multicenter observational study across 25 institutions in the US





Christine M. Groth, PharmD, BCCCP, FCCM<sup>1</sup>

Christopher A. Droege, PharmD, BCCCP, FCCM, FASHP<sup>2</sup>

Kathryn A. Connor, PharmD, BCCCP3

Kimberly Kaukeinen, BA1

Nicole M. Acquisto, PharmD, BCCCP, FCCM, FCCP, FASHP<sup>1</sup>

Sai Ho J. Chui, PharmD, BCPS, BCCCP4

Michaelia D. Cucci, PharmD, BCPS, BCCCP<sup>5</sup>

Deepali Dixit, PharmD, BCPS, BCCCP, FCCM<sup>6</sup>

Alexander H. Flannery, PharmD, PhD, BCPS, BCCCP, FCCM<sup>7</sup>

Kyle A. Gustafson, PharmD, BCPS, BCCCP<sup>8</sup>

Nina E. Glass, MD, FACS9

Helen Horng, PharmD, BCCCP10

Mojdeh S. Heavner, PharmD, BCPS, BCCCP, FCCM<sup>11</sup>

Justin Kinney, PharmD, MA, BCCCP12

Rachel M. Kruer, PharmD, BCCCP, CNSC<sup>13</sup>

William J. Peppard, PharmD, BCPS, FCCM<sup>14</sup>

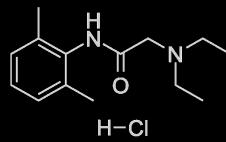
Preeyaporn Sarangarm, PharmD, BCPS, BCCCP<sup>15</sup>

Andrea Sikora, PharmD, MSCR, BCPS, BCCCP, FCCM<sup>16</sup>

Velliyur Viswesh, PharmD, BCIDP, BCCCP<sup>17</sup>

Brian L. Erstad, PharmD, MCCM, FCCP, FASHP<sup>18</sup>





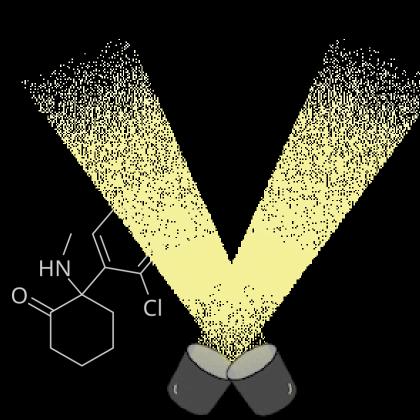

### Multicenter Retrospective Review of Ketamine Use in the ICU

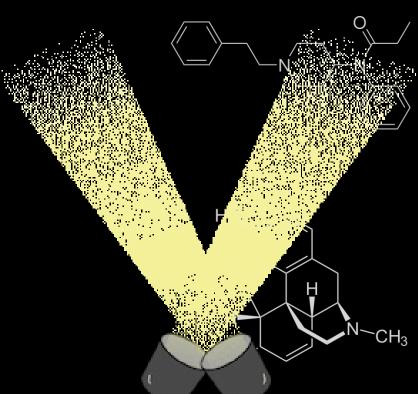
- Multicenter observational study across 25 institutions in the US
- Median starting dose 0.2 mg/kg/h (0.1 0.5 mg/kg/h)
- Significant increase in proportion of time spent within goal pain score (P < 0.001)
- Significant reduction in concomitant opioids and sedatives (P < 0.005)
- No difference in delirium (P = 0.233)

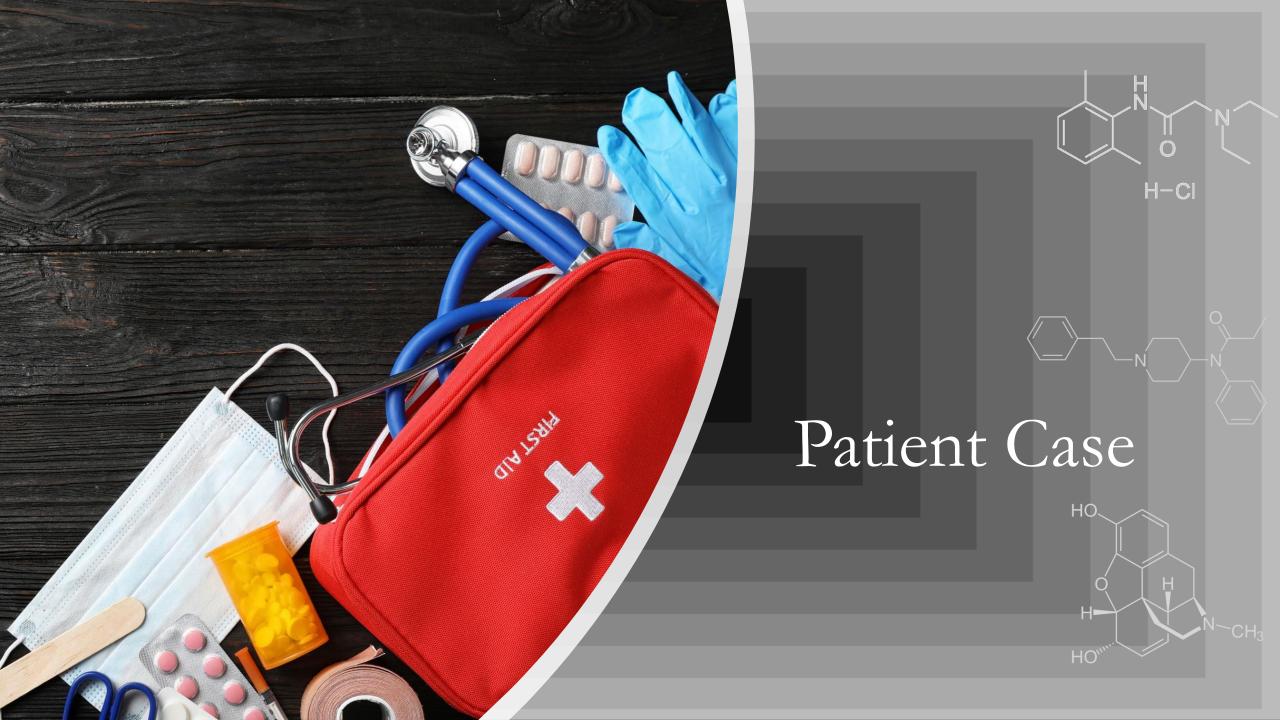
| /= | Time Period                | % Goal Pain<br>Score Range | ] |
|----|----------------------------|----------------------------|---|
| HN | 24 hours prior to ketamine | 68.9%                      |   |
|    | 0-24 hours                 | 78.6%                      |   |
|    | 25-48 hours                | 80.3%                      |   |

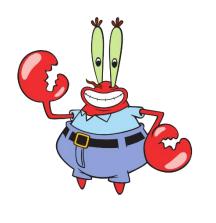
| Time Period                | % Goal Pain<br>Score Range | Median IV<br>Morphine<br>Equivalents | Median IV<br>Midazolam<br>Equivalents | Median Propofol<br>Dose |
|----------------------------|----------------------------|--------------------------------------|---------------------------------------|-------------------------|
| 24 hours prior to ketamine | 68.9%                      | 120 mg                               | 11 mg                                 | 942 mg                  |
| 0-24 hours                 | 78.6%                      | 118 mg                               | 6 mg                                  | 160 mg                  |
| 25-48 hours                | 80.3%                      | 80 mg                                | 3 mg                                  | o mg                    |




# Honorabilesterviels tions


> 0.11 mg/kg IV dexamethasone x 1





Volatile Anesthetics
Desflurane, isoflurane, sevoflurane

Peripheral Nerve Blocks
Bupivacaine, ropivacaine







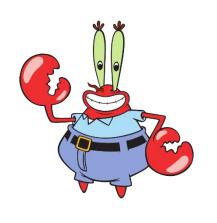


79M



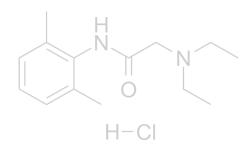
MVC




Admitted to TICU

### Injuries

- L 3-6 rib fractures
- L open femur fracture
- L ankle fracture
- L open humerus fracture


The team is discussing potential pain regimens for this patient. Which of the following statements is true regarding multi-modal analgesia?

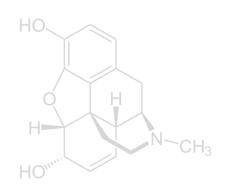
- a) Multi-modal analgesia has clear mortality benefit compared to opioid monotherapy
- b) Multi-modal analgesia can decrease opioid consumption
- c) Multi-modal analgesia should be avoided given the risk for non-union fractures
- d) Multi-modal analgesia is not appropriate given the extent of traumatic injuries

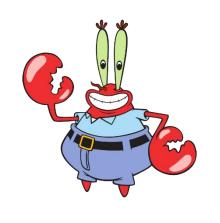






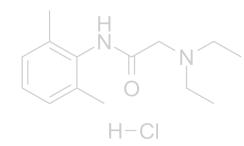



79M


MVC

Admitted to TICU

Which of the following is not a contraindication for IV lidocaine therapy when used to manage acute pain?


- a) Conduction abnormalities
- b) Previous anaphylaxis to bupivacaine
- c) Pregnancy
- d) Recent intra-abdominal procedures

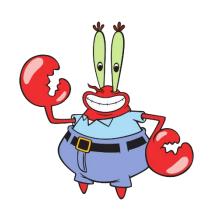






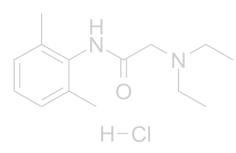





79M

MVC

Admitted to TICU


The surgical resident asks you about starting a gabapentin for this patient. Which statement is **incorrect**?

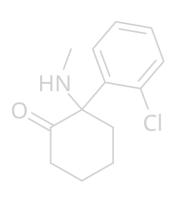
- a) Gabapentinoids have few interactions because they are not metabolized by CYP enzymes
- b) Gabapentinoids should be used with caution because GABA-a agonists can cause respiratory depression
- c) Gabapentin is reasonable but demonstrates non-linear pharmacokinetics
- d) Pregabalin has increased binding affinity compared to gabapentin and has more potency in neuropathic pain










79M

MVC

Admitted to TICU

Dexmedetomidine can be considered for adjunctive sedation but provides minimal analgesia without additional clinical benefit.

- a) True
- b) False



# Mu Over Opioids, Non-Opioid Pain Management Coming Through!

Matthew Li, PharmD, MHA, BCPS, BCCCP

Clinical Pharmacy Specialist – Trauma, Surgical, Burn ICU

Clinical Assistant Professor of Surgery - New York Medical College

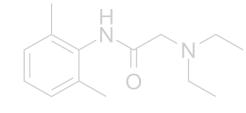
Westchester Medical Center Valhalla, NY

Sample
ERAS
Protocol
Components

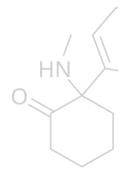
Ketorolac 15 mg IV Q6H x 24 H

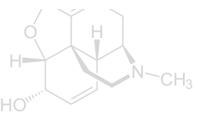
Ketamine infusion x 24 H

Gabapentin 300-600 mg PO Q8H x 7 D


Acetaminophen 1000 mg PO Q8H x 7D

Tizanidine 4 mg Q8H as needed


Oxycodone 5 mg PO Q4H for as needed breakthrough pain

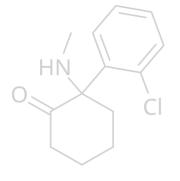

Ondansetron 4 mg PO Q6H as needed for nausea

# Types of Pain



|              | Description                                                                                 | Localization                                                  | Description                              | Etiology                                            | Management                                                                               |
|--------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|
| Nociceptive  | Tactile on skin and<br>external soft tissues;<br>musculoskeletal                            | Very localized                                                | Variable but typically sharp, stabbing   | Trauma, pressure                                    | Anti-inflammatories,<br>centrally acting agents;<br>opioids as last resort               |
| Visceral     | Deeper origin, e.g.,<br>gut or brain (colic,<br>obstruction)                                | Poorly localized<br>(headache, abdominal<br>pain, chest pain) | Dull, achy, colicky,<br>intermittent     | Injury or trauma to internal organs                 | Centrally acting;<br>opioids as last resort,<br>need to pursue cause                     |
| Neuropathic  | Commonly peripheral<br>extremities (spinal<br>cord injury, herpes<br>zoster, DM neuropathy) | Usually well localized                                        | Burning, piercing,<br>tingling; constant | Chronically damaged<br>nerves from DM,<br>ischemia, | Nerve stabilizers,<br>antidepressants > anti-<br>inflammatory; opioids<br>as last resort |
| Inflammatory | Soft tissues and joints                                                                     | Usually well localized                                        | Burning, aching, worse with movement     | Soft tissue or joint inflammation locally           | Anti-inflammatory; ice,<br>compression; opioids<br>as last resort                        |



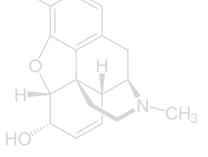



# Regional Anesthesia in the ICU



Minimize opioid use

Facilitates rehabilitation




Advantageous when systemic anesthesia for intubation should be avoided

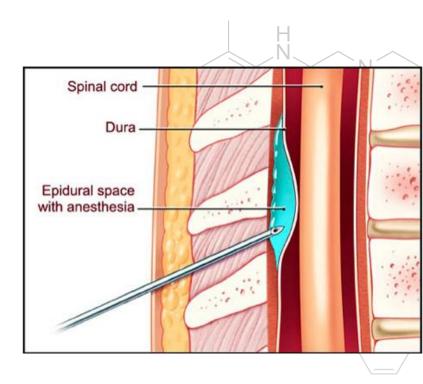


Effectively manage pain

Interrupts action potentials by reversibly binding to voltage-gated sodium channels



### Neuraxial Anesthesia


### Spinal, epidural, combined

### Commonly used for lower abdominal and lower extremity surgery

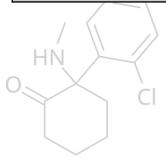
- Hemorrhoidectomy
- Hysterectomy
- Knee and hip replacements
- Prostatectomy
- Cesarean delivery
- Inguinal hernia repair

| Agent                   | Dose       | Duration     |
|-------------------------|------------|--------------|
| Chloroprocaine 3%       | 30 – 60 mg | 40 – 90 min  |
| Bupivacaine 0.5%, 0.75% | 15 – 20 mg | 90 – 120 min |
| Ropivacaine 0.5%, 0.75% | 15 – 20 mg | 90 – 200 min |

Complications: post-dural puncture headache, hypotension, hematoma, local anesthetic toxicity, total spinal block, nerve injury



#### **Absolute Contraindications**


- Epidural abscess
- Hemodynamic instability
- Coagulopathy
- Increased intracranial pressure

# Peripheral Nerve Blocks

HNON

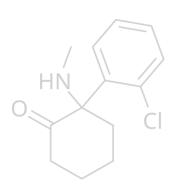
- Local anesthetics into tissues around peripheral nerves
- Great for long procedures and for intra-and post-procedural pain
- Similar complications to neuraxial anesthesia

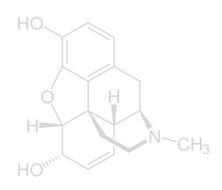
| Agent                   | Volume     | Duration      |
|-------------------------|------------|---------------|
| Lidocaine 1%-2%         | 30 – 50 mL | 120 – 240 min |
| Bupivacaine 0.25%-0.5%  | 30 – 50 mL | 360 – 720 min |
| Ropivacaine 0.2% - 0.5% | 30 – 50 mL | 360 – 720 min |



| Type of Block                             | <b>Common Procedures</b>   |
|-------------------------------------------|----------------------------|
| Transversus abdominis plane               | Abdominal                  |
|                                           | Groin                      |
| Rectus sheath                             | Chest                      |
| Paravertebral                             | Breast<br>Chest            |
| Brachial plexus and other upper extremity | Shoulder, arm, hand, digit |
| Femoral nerve                             | Thigh, femur, knee         |

De Pinto M, et al. Int J Crit Illn Inj Sci. 2015;5(3):138-143.

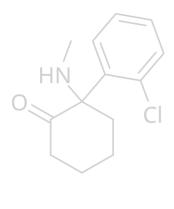

Berde CB, et al. Local anesthetics. Miller's Anesthesia. 2015:1028-53.

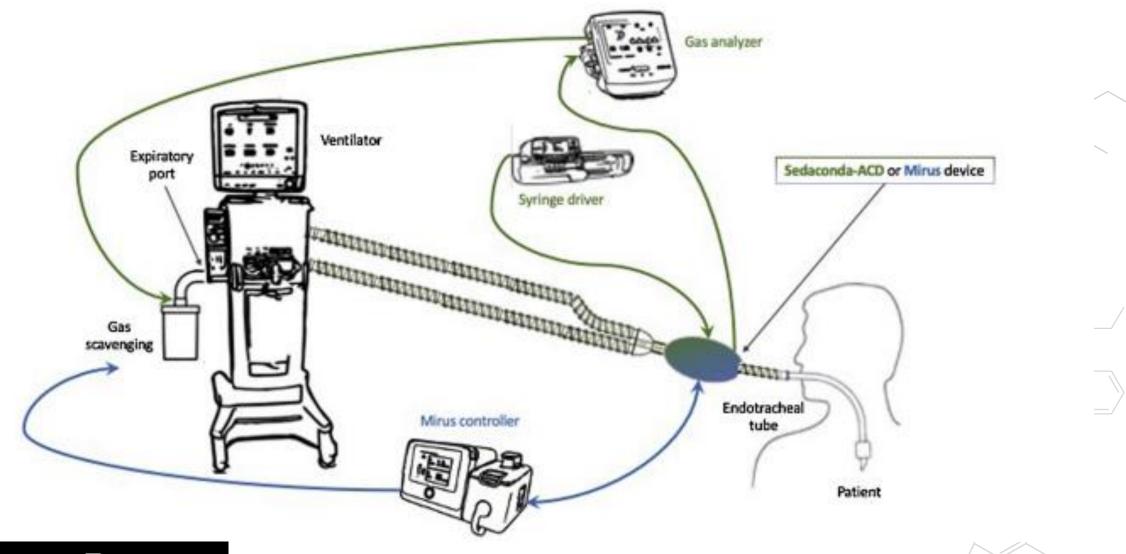

# Anticoagulation Considerations During Neuraxial Anesthesia or Peripheral Blocks

HNON

- Coagulopathies limit use
- Guideline recommendations from American Society of Regional Anesthesia and Pain Medicine (ASRA)
- Refer to institution specific policies
- Recommendations vary depending on type of blockade and anticoagulant



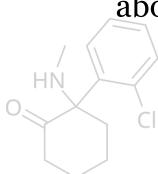


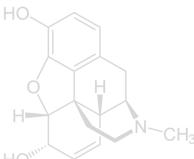




### Volatile Anesthetics

- Dose-dependent hypnosis, amnesia, anxiolysis, akinesia, autonomic, and somatic block, and respiratory depression
- Bronchodilator and anticonvulsant
- MOA: GABA agonists, NMDA antagonist
- Modest analgesic properties

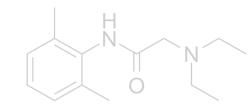
| Characteristics                   | Desflurane | Isoflurane | Sevoflurane |
|-----------------------------------|------------|------------|-------------|
| How Supplied                      | Liquid     | Liquid     | Liquid      |
| Preservative                      | No         | No         | No          |
| Blood-gas partition coefficient   | 0.42       | 1.46       | 0.65        |
| Brain-blood partition coefficient | 1.3        | 1.6        | 1.7         |
| Recovered as metabolites (%)      | 0.02       | 0.2        | 2-5         |
| Elimination                       | Lungs      | Lungs      | Lungs       |
| Hepatic metabolism (%)            | 0.02       | 0.2        | 2-5         |
| Tachyphylaxis                     | No         | No         | No          |




Replacement Frequency Sedaconda-ACD: 24 hours Mirus System: 7 days HOW CH<sub>3</sub>

### Considerations of Inhaled Anesthetics


- and LOS
- Conflicting evidence supporting reduction in opioid requirements and LOS
- ADR
  - Dose dependent hypotension (not reflected in studies)
  - Nausea, vomiting
  - Malignant hyperthermia
  - Psychomotor (hallucinations, tremor, chorea)
  - Blunted cerebral autoregulation, increased cerebral vasodilation
- Time-weighted exposure risk for developmental defects and spontaneous abortions





Herzog-Niescery J, et al. J Clin Monit Comput 2018;32:667-75 Meiser A, et al. Lancet Respir Med 2021;9:1231-40. Ariyama J, et al. J Clin Anesth 2009;21:567-73.

### Summary of Guideline Recommendations



| Agent                     | 2018 PADIS                                                                             | 2016 American Pain Society             |
|---------------------------|----------------------------------------------------------------------------------------|----------------------------------------|
| Acetaminophen             | Recommended – conditional, very low quality                                            | Recommended – strong, high quality     |
| Dexmedetomidine           | Not addressed for pain                                                                 | Not addressed                          |
| Ketamine                  | Recommended for postoperative ICU patients – conditional, low quality                  | Recommended – weak, moderate quality   |
| Lidocaine                 | Routine use not recommended – conditional, low quality                                 | Recommended – strong, high quality     |
|                           |                                                                                        | CI in patients post-CABG               |
| Neuropathic agents        | Recommended for neuropathic pain in critically ill patients – strong, moderate quality | Recommended – strong, moderate quality |
|                           | Recommended after cardiac surgery – conditional, low quality                           |                                        |
| NSAIDs                    | Routine use of COX-1 selective not recommended – conditional, low quality              | Recommended – strong, high quality     |
|                           |                                                                                        | CI in CABG patients                    |
| Skeletal muscle relaxants | Not addressed                                                                          | Not addressed                          |
| Volatile anesthetics      | Not recommended – strong, very low quality                                             | Not addressed                          |