Let the Sun Shine in: Vitamin D and other Supplements in the ICU

Kimberly Zammit, PharmD, BCPS, BCCCP, FASHP Clinical Pharmacy Coordinator, Critical Care and Cardiology Buffalo General Medical Center

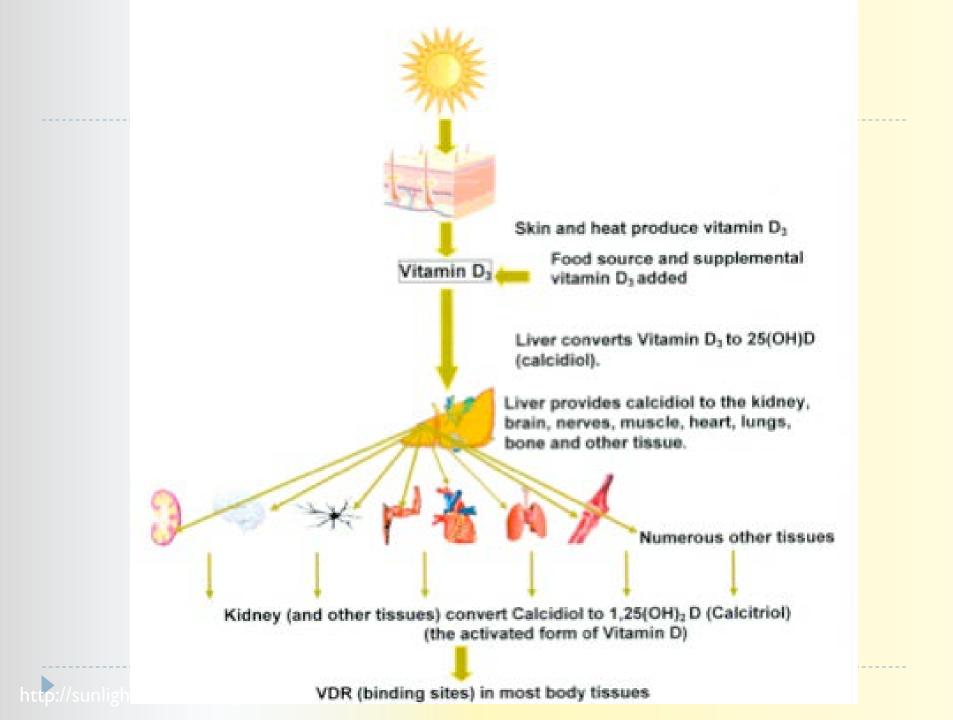
Disclosures

None to report

Learning Objectives

- Identify the biologic plausibility for supplements in critically ill patients
- Discuss the potential harm of supplement use in critically ill patients
- Review the scientific literature that evaluates supplement use in critically ill patients
- Recommend supplement use based on patient-specific characteristics

Why Consider Supplements?


- Perceived safe therapeutic window
- Ease of use
- Inexpensive
- Little "down side"
- Do we really need RCTs?

Q1: Which of the following is correct regarding vitamin D status in ICU patients?

- a) Observed in 25 % of patients
- b) Deficiency causes an increased risk of infection
- c) Supplementation of 5000 units/day has been shown to decrease ICU LOS
- d) Values less than 20 ng/ml are considered deficient

Vitamin D

- Synthesized from cholesterol upon exposure to UVB light
- Deficiency is more prevalent in certain groups
 - Age, skin color, geography, sun exposure
- Functions in the body as a steroid hormone
 - Calcium/phosphate homeostasis / bone
 - Immune, cardiovascular, muscle, brain, pancreas and cell cycle control
 - VDR is present in the nucleus of many tissues not involved in calcium and phosphate metabolism
- Epidemiologic evidence demonstrates an association between Vitamin D deficiency and diseases

Vitamin D *Potential Role of Vitamin D Supplementation*

- General Health and Deficiency
- CV Disease
 - HTN, HF, ASD
 - Statin myopathy
- Diabetes
- Respiratory Diseases
 - Asthma/COPD
- Eye Disease

- Infectious Diseases
 - TB/ URIs
 - Immune function
 - Neurologic Disease
 - MS, Depression, Dementia
 - Migraines
 - Cancer
 - Colon and Breast

Evaluation of Vitamin D Concentrations

- Plasma protein binding
 - VDBP 90%, Albumin ~ 10%, Free 1%
- Calcidiol (25(OH)D) best indicator of vitamin D status
 - Represents vitamin D produced by the skin and that consumed
 - Circulating half-life of 15 days
 - 25(OH)D functions as a biomarker of exposure, but not tissue stores
- Calcitriol (1,25(OH)₂D) poor indicator of vitamin D status
 - Short half-life of 15 hours
 - Serum concentrations are closely regulated by parathyroid hormone, calcium, and phosphate
 - Levels do not decrease until deficiency is severe

Vitamin D Serum Concentrations and Health Status

nmol/ml	ng/ml	Health Status
< 30	< 12	Associated with vitamin D deficiency, leading to rickets in infants and children and osteomalacia in adults
30 — 50	12 – 20	Generally considered inadequate for bone and overall health in healthy individuals
<u>></u> 50	<u>></u> 20	Generally considered adequate for bone and overall health in healthy individuals
> 125	> 50	Emerging evidence links potential adverse effects to such high levels, particularly >150 nmol/L (>60 ng/mL)

Serum concentrations of 25(OH)D are reported in both nmol/L and ng/mL. 1 nmol/L = 0.4 ng/mL

Vitamin D in Critical Illness

Vitamin D Deficiency (< 20 ng/ml) in 50%

- I7 % have undetectable levels
- Associated with adverse outcomes:
 - Infections
 - ► LOS
 - Kidney Injury
 - Mortality (although conflicting results)
- Unknown cause/effect relationship
 - ? marker of disease severity
- Reduction likely due to decrease in Vitamin D binding protein (VDBP)
- Guidelines do not recommend routine supplementation
 - Bariatric surgery patients in ASPEN/SCCM guidelines

Vitamin D in Critical Illness *Meta-analysis*

							Mortality	
	Experim	ental	Cont	rol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Amrein 2011	6	12	6	13	8.1%	1.08 [0.48, 2.45]		
Amrein 2014	67	237	84	238	76.3%	0.80 [0.61, 1.04]		
Han 2016	1	20	1	10	0.8%	0.50 [0.03, 7.19]		
Leaf 2014	8	36	7	31	6.8%	0.98 [0.40, 2.40]		
Nair 2015	5	25	5	25	4.4%	1.00 [0.33, 3.03]		
Quraishi 2015	5	20	3	10	3.7%	0.83 [0.25, 2.80]	· · · · · · · · · · · · · · · · · · ·	
Total (95% CI)		350		327	100.0%	0.84 [0.66, 1.06]	•	
Total events	92		106					
Heterogeneity: Tau ² =	= 0.00; Ch	$i^2 = 0.8$	6, df = 5	(P = 0	.97); I ² =	0%		-
Test for overall effect				3		0.0	0.01 0.1 1 10 1 Favours [experimental] Favours [control]	100

Manstality

Additional endpoints evaluated

ICU and hospital LOS, infection rate, MV days

Langlois PL et al Clin Nutr May 11 2017. http://dx.doi.org/10.1016/j.clnu.2017.05.006. pii: S0261-5614(17)30167-X

Vitamin D Replacement

- Expected change in blood concentration of calcidiol (25-hydroxy vitamin D) with daily dosing for 2 – 3 months
- Use maintenance doses once desired level is achieved
- Administer with meal/fat for best absorption
- D3 (cholecalciferol) more efficient than D2 (ergocalciferol)
- Some regimens may include larger monthly/weekly dose
 - May be harmful!

Dosage (IU)	Change Blood Concentration
100	l ng/ml
200	2 ng/ml
400	4 ng/ml
800	8 ng/ml
1000	10 ng/ml
2000	20 ng/ml

Vitamin D Daily Reference Intakes

Life Stage Group	Estimated Average Requirement (IU/day)	Recommended Dietary Allowance (IU/day)	Upper Level Intake (IU/day)
19-30 years old	400	600	4,000
31-50 years old	400	600	4,000
51-70 year old males	400	600	4,000
51-70 year old females	400	600	4,000
>70 years old	400	800	4,000
14–18 years old, pregnant/lactating	400	600	4,000
19–50 years old, pregnant/lactating	400	600	4,000

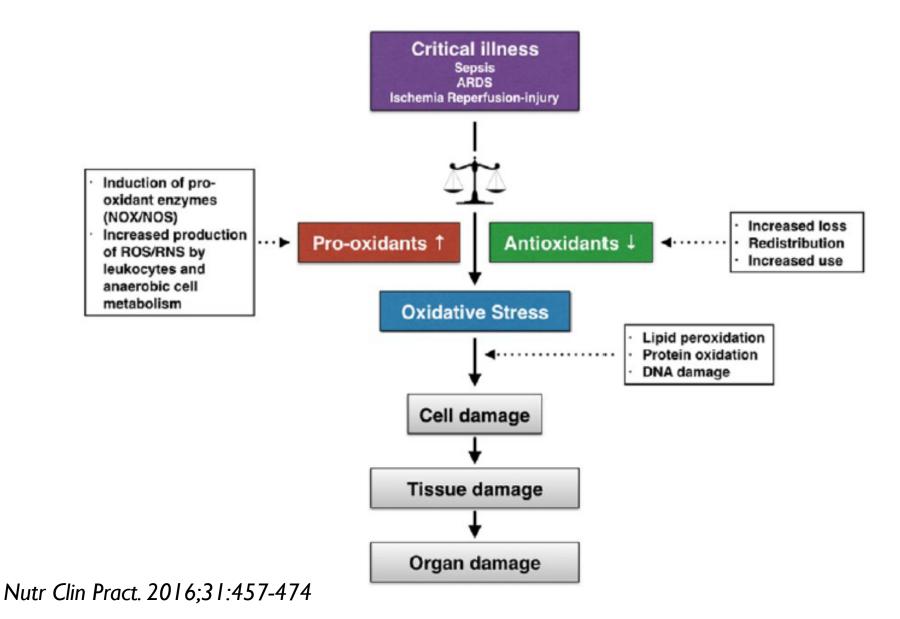
I IU vitamin D = 0.025mcg cholecalciferol and ergocalciferol

Institute of Medicine. Dietary reference intakes for calcium and vitamin D.Washington, DC: National Academies Press. 2010.

Antioxidants

Components of the Oxidative Balance

The Bad Guys


- Reactive Oxygen Species (ROS)
 - Superoxide Anion (O₂⁻)
 - Hydroxyl Radical (OH)
 - Hydrogen Peroxide (H₂O₂)
- Reactive Nitrogen Species (RNS)
 - Nitric Oxide (NO⁻)
 - Peroxynitrite (ONOO⁻)

The Good Guys

Antioxidant Enzymes

- Superoxide dismutase (SOD)
- Catalase (CAT)
- Glutathione peroxidase (GPx)
- Thioredoxin system (TRX)
- Antioxidant Compounds
 - Vitamins A, C, E
 - Selenium, Zinc

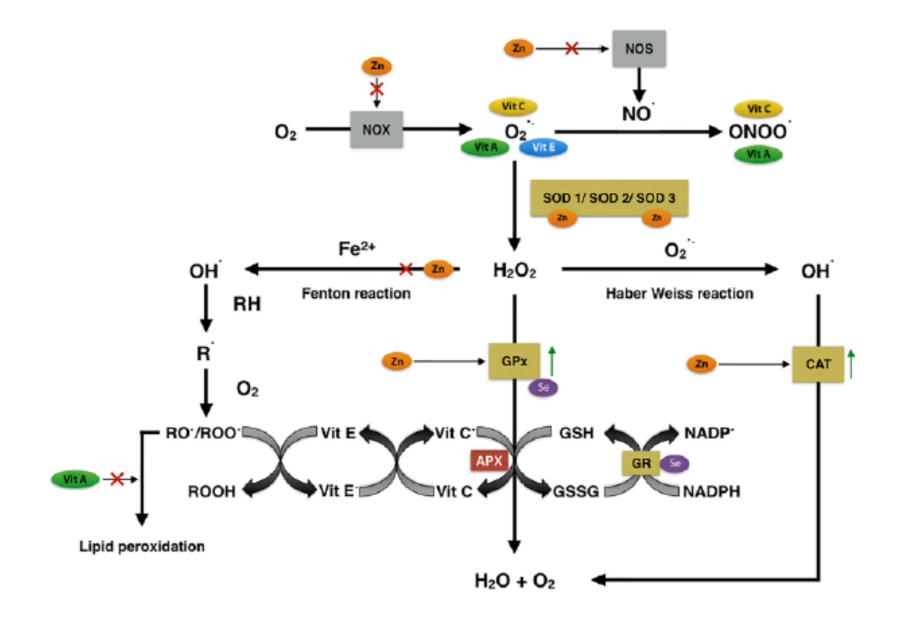
Consequences of Oxidative Stress

Oxidative Stress in Critical Illness

Sepsis

- Large amounts of radical produced by phagocytes and upregulated enzymes (ie NADPH, iNOS)
 - Increased production of ROS/RNS

Produces oxidative stress and stimulates inflammatory mediators


- Mitochondrial damage results in organ dysfunction
- Vascular hyporeactivity to catecholamines and increased permeability
- Glutathione unable to impact vascular and endothelial dysfunction due to inactivation by peroxynitrite
- Reduced antioxidant status
 - Redistribution, body fluid losses, dilution, inadequate intake

Oxidative Stress in Critical Illness

- Ischemia / reperfusion injury
 - Increased mitochondrial ROS production and xanthine oxidase activity
 - Hypoxanthine accumulated during hypoxia reacts with oxygen upong reperfusion to produce superoxide
 - Vascular NADPH oxidase and eNOS
 - Induce superoxide and NO production resulting in peroxynitrite
- ARDS
 - Activated neutrophil migration into alveoli produces inflammatory mediators including ROS/RNS
 - Peroxynitrate is produced which inactivates surfactant / DNA damage
 - O₂ and NO administration increase oxidant production
 - Glutathione usually abundant in lungs is reduced

Q2: Which of the following are vitamins and trace minerals involved in the antioxidant network (select all that apply)?

- a) Selenium
- b) Thiamine
- c) Vitamin A
- d) Zinc

Nutr Clin Pract. 2016;31:457-474

Selenium

- Essential micronutrient that functions as a enzymatic cofactor of more than 30 selenoproteins
 - Biologic activity includes the antioxidant defense system, thyroid and immune function
 - 50 % have antioxidant activity
 - 60% found in serum as selenoprotein P (SePP)
- Excellent absorption
- Renal excretion
- Homeostasis effected by SIRS
 - Redistributed to tissues involved in protein synthesis and immune

Selenium Status in Critically Ill Patients

- Levels lower vs normal
- Sepsis and shock show a greater decrease compared to other ICU populations
- Urinary excretion remains constant
- Lower levels correlated with adverse outcomes:
 - Negative correlation with sepsis severity scores
 - 3 x higher mortality and 3.5 x higher rate of organ failure with level below 0.70 µmol/L
 - SePP levels 70% lower on admission for septic patients and significantly lower in non-survivors
 - Levels below 60 µg/L (0.78 µmol/L) predict mortality with a 81.2% specificity

Does selenium supplementation improve outcomes?

Meta-Analysis	Population (N)	Mortality RR (95% CI)
Huang et al	ICU septic patients	0.83
2013	965	(0.70 – 0.99)
Alhazzani et al	ICU septic patients	0.73
2013	792	(0.54 – 0.98)
Kong et al	ICU septic patients	0.89
2013	530	(0.73 – 1.07)
Landucci et al	Critically III patients	0.84
2014	921	(0.71 – 0.99)
Canadian practice guidelines	Critically III patients	0.99
2015	3918	(0.90 – 1.08)
Cochrane Review	Critically III patients	0.82
2015	1391	(0.72 – 0.93)
ASPEN/SCCM	Critically III patients	0.94
2016	1888	(0.84 – 1.06)

Zinc

- Essential trace element required for normal immune function, glucose control, neurocognitive function, wound healing and oxidative stress response
 - Cofactor in > 300 enzymes
 - Role in DNA and protein synthesis, cell proliferation and cell membrane integrity
- No specific storage system
 - Body stores determined by intake and renal/intestinal excretion
- Low plasma levels common in critically ill / SIRS
 - Redistribution, increased utilization, enhanced urinary excretion and poor nutrition all contributory

Zinc' role in the antioxidant activity

- Increases antioxidant enzymes
 - Increases activation of OC, GPx and CAT
 - Stimulates glutathione synthesis
- Reduces pro-oxidant enzyme activity
 - Inhibits NADPH, iNOS, NMDA
- Competes with redox active transition metals
 - Iron and copper are prohibited from catalyzing the formation of free radicals
- Protects proteins from oxidation through binding of sulfhydryl groups
- Enhances glucose transport into cells
- Binds to thionein proteins to form free radical scavenger metallothionein

Zinc supplementation in the critically ill

- Majority of clinical trials evaluating zinc supplements included it as part of an antioxidant cocktail
- One trial evaluated its use alone¹
 - Small (n=68), limited population (closed head injury), RCT who received zinc for 15 days in PN followed by oral for 3 months
 - One month mortality was lower in the zinc supplement group 12% vs 26%, p=0.09 with improved neurologic recovery
 - Control group had more subjects undergo craniotomies and receive barbiturates
 - Systematic Review²
 - Trend toward reduced mortality and ICU LOS but 3 of the 4 studies included additional antioxidants

¹J Neurotrauma 1996;13:25 – 34 ² JPEN 2008;32:509-19

Vitamin A

- Fat soluble vitamin essential for multiple physiologic functions including vision, cellular proliferation and differentiation, immune function, reproduction and antioxidant activity
- Consists of a group of retinoids (retinol, retinoic acid, retinal) and carotenoids (α , β , γ)
 - $\triangleright \beta$ carotene is the most potent antioxidant
- Retinol is absorbed in the small intestine, stored in the liver and excreted in the bile
 - Acute infection increases retinol and RBP urinary excretion
- Zinc deficiency may produce vitamin A deficiency
 - Inhibits RBP production as well as the enzyme that converts retinol to retinal (form used by the eye)
- Low plasma levels observed in > 50% critically ill / SIRS

Vitamin A Supplementation in critical illness

- β carotene vs retinol
 - Carotenoids generally safer due to the highly regulated metabolic conversion
 - Evaluation of low carotenoid concentrations did not demonstrate correlation with
- Primarily studied as part of an antioxidant cocktail
- One study in 90 CABG patients randomized 2:1 placebo/ vitamin A 5000 units daily x 21 days demonstrated vitamin A:
 - Reduced mortality (3.3% vs 8.3%)
 - Reduced ICU LOS (4.6 vs 8.5 days)
 - No difference in time on mechanical ventilation (2.1 vs 2.7 days)

Vitamin E

- Family of lipid-soluble tocopherols and tocotrienoles
 - $\triangleright \alpha$ -tocopherol is the most potent
- Antioxidant, membrane stability and immune support in response to infection
- Primarily found in the cell membrane
- Protects the cell membrane from peroxidation by breaking the lipid radical chain reaction
- Lipid status influences measurement in plasma
 - Reduced concentrations noted in critically ill patients may be related to reduced lipid concentrations
 - No relationship observed between serum concentrations and patient outcomes
- Studies evaluating Vitamin E supplementation as a single intervention have not demonstrated impact on outcome

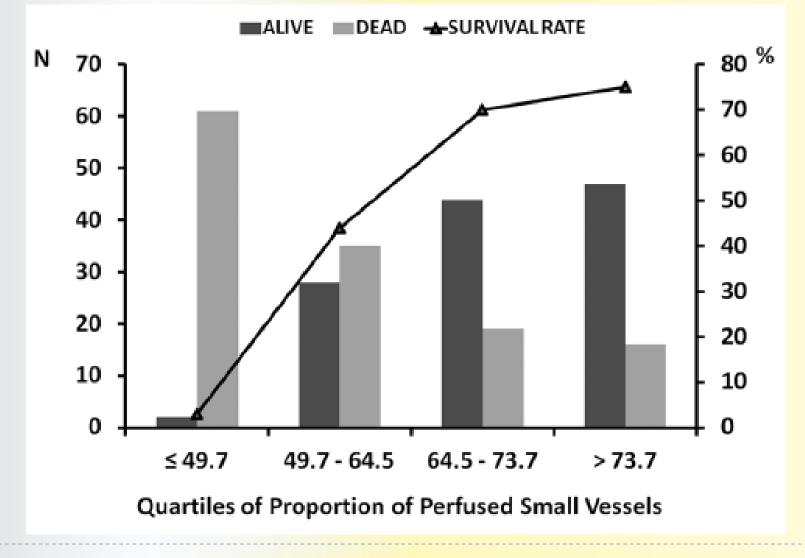
Vitamin C

- Ascorbic Acid
- Water soluble antioxidant that is a cofactor for several enzymes
 - Iron and Folic Acid Metabolism
 - Collagen, cortisol, cathecholamine and carnitine synthesis
 - Augments immune function via various pathways
- Absorbed in the small intestines
 - Saturable process
- Renally excreted
- Intracellular concentrations 25 80 x higher than plasma
 - Oxidative stress increases intracellular transport

Vitamin C as an antioxidant

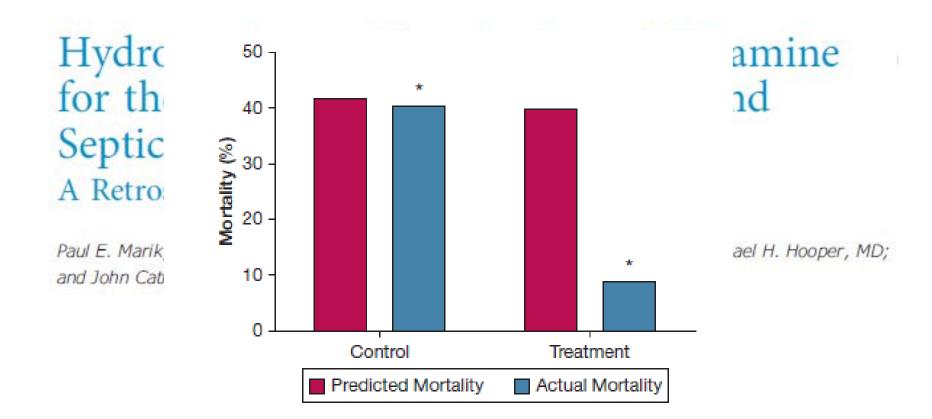
- Limits generation of ROS
- Directly scavenges ROS/RNS
 - Superoxide, hydroxyl, peroxyl and nitroxyl
- Repairs other oxidized scavengers
 - Glutathione and Urate
- Regenerates Vitamin E
- Indirect activity results in conversion of H2O2 to water
- Low plasma concentrations in critical illness
 - Associated with inflammation, organ failure severity and mortality
 - Causes included inadequate intake, increase utilization and increased losses

Vitamin C supplementation in critical illness


- Large doses to normalize plasma concentrations (3 g/day)
- Many investigations combine antioxidants
- Cardiac surgery
 - Hospital LOS (10 vs12) but not ICU LOS shortened
 - Variable effects on POAF
- Burns²
 - Standard of care as part of routine vitamin supplementation
 - High doses may stabilize endothelial function
- Sepsis³
 - Phase I trial evaluated 2 dosing strategies vs placebo N = 28
 - 50 mg/kg/day and 200 mg/kg/day
 - Reduction in biomarkers ,SOFA scores , mortality

¹Harling L et al Heart 2011; 97:1636–1642.

²Tanaka H et al Arch Surg 2000;135:326-31


³Fowler et al J Transl Med 2014;12:32

Sepsis and Microcirculation

De Backer et al Crit Care Med 2013; 41:791-9

Vitamin C Cures Sepsis!

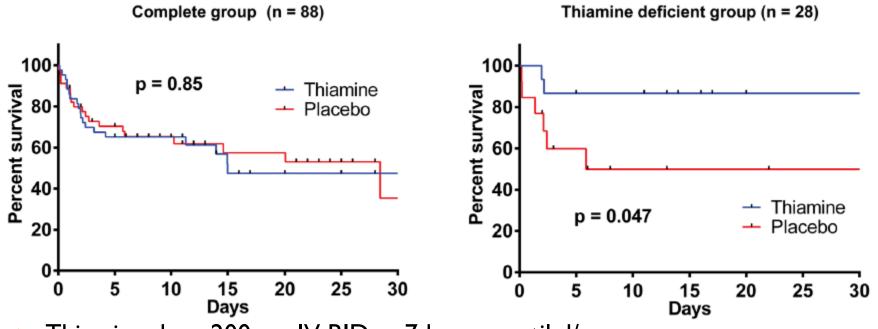
CHEST 2017; 151(6):1229-1238

Is Thiamine the "unsung hero"

Gritsenko D et al Chest 2017;152:678-679

Thiamine

- Essential for normal functioning of the Kreb's cycle
 - Deficiency results in anaerobic metabolism
- Critically III patients deficient 10 70%
- Elevated lactate, acidosis and hypotension occur in both septic shock and thiamine deficiency
 - Increased lactate results from failure of oxygen utilization secondary to thiamine's essential role in mitochondrial metabolism


Thiamine

- Retrospective cohort study of septic shock patients with a concurrent alcohol use disorder admitted to the ICU
- Patient characteristics were similar between groups except for a significant difference in platelets (p = 0.04)

	Thiamine N = 34	No Thiamine N = 19	P-value
Mortality (%)	15 (44)	15 (79)	0.02
Hospital-free days	12	18	0.36
ICU-free days	21	21	0.71

J Crit Care. 2017 Aug 16;43:61-64.

Thiamine to resuscitate septic shock

Thiamine dose 200 mg IV BID x 7days or until d/c

 Individuals with a potential for thiamine deficiency (ie alcoholics) were excluded

Should we combine antioxidants?

Q3: Antioxidant "cocktails" in critically ill patients may possibly be harmful to patients with:

- a) Mechanical ventilation
- b) Renal failure
- c) Obesity
- d) Respiratory failure

ASPEN / ACCM Guidelines

	Antioxidants star		standa	standard		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Andrews, 2011	84	251	84	251	24.5%	1.00 [0.78, 1.28]	-+-	
Kuklinski, 1991	0	8	8	9	0.2%	0.07 [0.00, 0.98]	•	
Mishra, 2007	11	18	15	22	7.7%	0.90 [0.56, 1.43]		
Crimi, 2004	49	112	76	112	24.7%	0.64 [0.50, 0.82]		
Angstwurm, 1999	7	21	11	21	3.2%	0.64 [0.31, 1.32]		
Angstwurm, 2007	46	116	61	122	18.9%	0.79 [0.60, 1.06]		
Forceville, 2007	14	31	13	29	5.4%	1.01 [0.58, 1.76]		
Zimmerman, 1997	3	20	8	20	1.3%	0.38 [0.12, 1.21]		
Preiser, 2000	8	20	6	17	2.5%	1.13 [0.49, 2.62]		
Valenta, 2011	19	75	24	75	6.5%	0.79 [0.48, 1.32]		
Manzanares, 2011	3	15	5	16	1.1%	0.64 [0.18, 2.22]		
Young, 1996	4	33	9	35	1.5%	0.47 [0.16, 1.38]		
Berger, 2007	1	11	1	10	0.3%	0.91 [0.07, 12.69]	← →	
Berger 2001a	2	9	1	12	0.3%	2.67 [0.28, 25.04]	· · · · · · · · ·	
Berger 2001b	0	11	1	12	0.2%	0.36 [0.02, 8.04]	• · · ·	
Schneider, 2011	6	29	6	29	1.7%	1.00 [0.37, 2.74]		
Total (95% CI)		780		792	100.0%	0.80 [0.70, 0.92]	•	
Total events	257		329					
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00: Chi ² = 15.56. df = 15.7P = 0.41): I ² = 4%							
Test for overall effect: Z = 3.27 (P = 0.001) Test for overall effect: Z = 3.27 (P = 0.001) Test for overall effect: Z = 3.27 (P = 0.001)								

Journal of Parenteral and Enteral Nutrition2016;40:159–211

Antioxidant "cocktail" RCTs

Trial / population	Intervention	Results
SIGNET N= 502 BMJ 2011	ICU PN patients Selenium / glutamine / both vs. placebo up to 7 days	All endpoints negative except new infection for those treated > 5 days
REDOXS N=1223 NEJM 2013	ICU patients w/multiorgan failure w/in 24 hrs Antioxidants / glutamine / both vs. placebo up to 7 days Antioxidants 500 mcg IV Se + Enteral Se, Zn, β-carotene, Vit E,Vit C	Primary Endpoint : 28 Day Mortality Glutamine OR 1.28 (1.00-1.64) Antioxidants OR 1.09 (0.86 – 1.40) Suggested harm in patients with renal failure
MetaPlus N=301 JAMA 2014	ICU patients on MV > 72 hrs Immune modulating high protein (IMHP) EN vs HP EN IMHP included glutamine, Ω3 FA, Se, Zn,Vit C,Vit E	Primary Endpoint: Incidence of new infections – no difference 6 Month Mortality (medical subgroup): 54 % (40-67) IMHP vs 35 % (22-49) HP

Evaluating the effect of nutritional supplementation in critically ill patients

- Rigorous data on "normal" and association with risk of poor outcomes is not available
- Data demonstrating an association do not substantiate causation
 - Proper stress response?
 - RDAs are unknown in critical illness
- Dose response relationship unknown
 - Likely a u-shaped curve
- Bioavailability and interaction between antioxidants
 - Both therapeutic and antagonistic
- Should the inflammatory response be mitigated?
- Population heterogeneity and confounding

Conclusions

- Although preclinical and small trials indicate benefit with vitamin and anti-oxidant supplementation much controversy exists
 - Conflicting study results
 - Uncertainty regarding proper dosing
 - Potential for harm
- Current guidelines do not consider more recent studies
- Supplementation beyond physiologic (RDAs) is not supported with current evidence
 - Renally impaired patients seem most likely to be harmed

References

Vitamin D Meta-analysis

- Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 2014;312:1520e30.
- Quraishi SA, De Pascale G, Needleman JS, Nakazawa H, Kaneki M, Bajwa EK, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled trial. Crit Care Med 2015;43:1928e37.
- Nair P, Venkatesh B, Lee P, Kerr S, Hoechter DJ, Dimeski G, et al. A randomized study of a single dose of intramuscular cholecalciferol in critically ill adults. Crit Care Med 2015;43:2313e20.
- Han JE, Jones JL, Tangpricha V, Brown MA, Brown LA, Hao L, et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Transl Endocrinol 2016;4: 59e65.
- Amrein K, Sourij H, Wagner G, Holl A, Pieber TR, Smolle KH, et al. Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. Crit Care 2011;15:R104.

References

Selenium Meta-analysis

- Huang TS, Shyu YC, Chen HY, et al. Effect of parenteral selenium supplementation in critically ill patients: a systematic review and metaanalysis. PLoS One. 2013;8(1):e54431.
- Kong Z, Wang F, Ji S, Deng X, Xia Z. Selenium supplementation for sepsis: a meta-analysis of randomized controlled trials. Am J Emerg Med. 2013;31(8):1170-1175.
- McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211.
- Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev. 2015;7:CD003703.
- Landucci F, Mancinelli P, De Gaudio AR, Virgili G. Selenium supplementation in critically ill patients: a systematic review and metaanalysis. J Crit Care. 2014;29(1):150-156.
- Critical Care Nutrition. Canadian Clinical Practice Guidelines: 11.2 supplemental antioxidant nutrients: parenteral selenium. 2015. www.criticalcarenutrition.com.Accessed December 28, 2015.

References

Anti-oxidants cocktails

- Andrews PJ, Avenell A, Noble DW, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542.
- Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489-1497.
- Heyland DK, Elke G, Cook D, et al. Glutamine and antioxidants in the critically ill patient: a post hoc analysis of a large-scale randomized trial. JPEN J Parenter Enteral Nutr. 2015;39(4):401-409.
- Zanten van AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312(5):514-524.