Augmented Renal Clearance: Let's Get the Discussion Flowing

Terry Makhoul, PharmD

PGY-2 Emergency Medicine Pharmacy Resident

University of Rochester Medical Center Strong Memorial Hospital

Disclosures

Nothing to disclose

Pharmacist Objectives

I. Explain the concept of augmented renal clearance and review the incidence and associated risk factors

2. Describe the potential impact of augmented renal clearance on attainment of antimicrobial pharmacokinetic targets

3. Evaluate the literature regarding the impact of augmented renal clearance on clinical outcomes

Background

- Augmented renal clearance (ARC) newly described phenomenon
- ARC literature
 - Recognition
 - Pharmacokinetics in the critically ill population
 - Clinical outcomes
- Dangers of inadequate dosing of antimicrobials in critical illness

MEDICINE of THE HIGHEST ORDER http://www.nextavenue.org/wp-content/uploads/2015/06/Are-You-At-Risk-for-Kidney-Disease-491325253.jpg

Which of the following best describes augmented renal clearance?

- A) Glomerular hypofiltration
- B) Hypoperfusion of the kidneys during a shock state
- C) A manifestation of enhanced renal function seen in critically ill patients
- D) I'm not sure

Which of the following best describes augmented renal clearance?

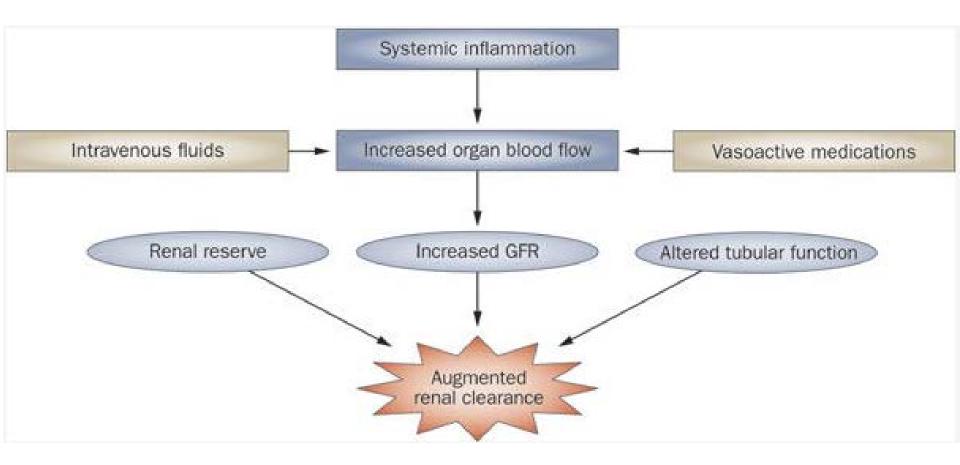
- A) Glomerular hypofiltration
- B) Hypoperfusion of the kidneys during a shock state
- **C)** A manifestation of enhanced renal function seen in critically ill patients
- D) I'm not sure

Augmented Renal Clearance

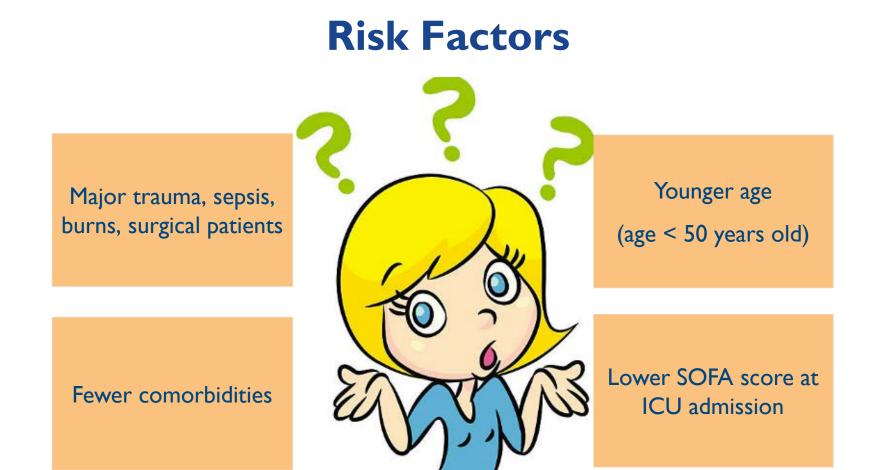
"Glomerular hyperfiltration"

"Enhanced renal elimination of circulating solute by the kidneys" NO STANDARDIZED DEFINTION!

"Supraphysiologic state of kidney function"


Creatinine Clearance (CrCL)

 \geq 130 mL/min/1.73m²


Udy, et al. *Clin Pharmacokinetics* 2010;49(1):1-16; Hobbs, et al. *Pharmacotherapy* 2015;35(11):1063-1075; Udy, et al. *Nature Reviews* Nephrology 2011;7(9):539-543 MEDICINE of THE HIGHEST ORDER

Pathophysiology

APACHE II: Acute Physiology and Chronic Health Evaluation SOFA: Sequential Organ Failure Assessment

Which of these patients is at highest risk of exhibiting ARC?

A) 80 yo F with CHF, Afib, CKD, DM2 admitted to the ICU with LLL PNA, SOFA score 15 on admission

B) 64 yo F with breast cancer admitted to the medicine service for DVT

C) 56 yo F with COPD, RA admitted to the medicine service for a rheumatoid arthritis flair

D) 25 yo M admitted to neuro-ICU with severe traumatic brain injury

Which of these patients is at highest risk of exhibiting ARC?

A) 80 yo F with CHF, Afib, CKD, DM2 admitted to the ICU with LLL PNA, SOFA score 15 on admission

B) 64 yo F with breast cancer admitted to the medicine service for DVT

C) 56 yo F with COPD, RA admitted to the medicine service for a rheumatoid arthritis flair

D) 25 yo M admitted to neuro-ICU with severe traumatic brain injury

Identification of ARC

Calculated CrCL	Cockgroft Gault (CG)		
	 Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 		
	Modification of Diet in Renal Disease (MDRD)		

- Measured CrCL
- CrCL = Urine Cr x Volume (mL/min) / Scr
- Requires 8,12, or 24- hour urine collection

Calculated vs. Measured CrCL

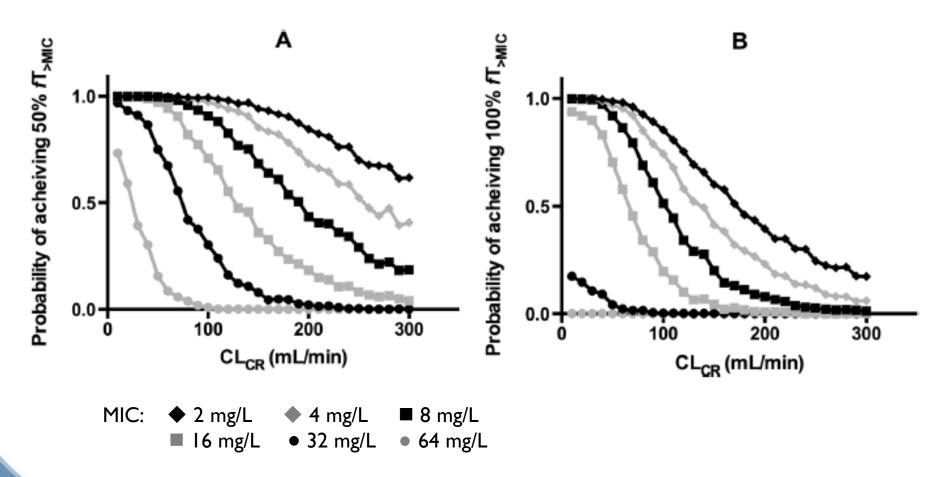
Study	Methods	Results	
Barletta, et al., 2016	-Calculated: CG, MDRD, CKD-EPI -Measured: I2-hr urine collection	CG & measured CrCL: r_s = 0.610 MDRD & measured CrCL: r_s = 0.547 CKD-EPI and measured CrCL: r_s = 0.595 -Weak correlation	
Grootaert, et al., 2012	-Calculated: CG, MDRD -Measured: 24-hr urine collection	CG & measured CrCL: $r_s = 0.343$ MDRD & measured CrCL: $r_s = 0.290$ -Weak correlation	
Ruiz et al., 2015 -Calculated: CG, MDRD, CKD-EPI -Measured: 24-hr urine collection		Bland-Altman method showed poor agreement between CG, MDRD, CKD- EPI and measured CrCL	

Bottom Line

Calculated CrCL did not correlate well with measured CrCL in all of the studies

Should we measure CrCL in all patients who meet risk factors? How many risk factors?...TBD

ARC AND PHARMACOKINETIC TARGETS

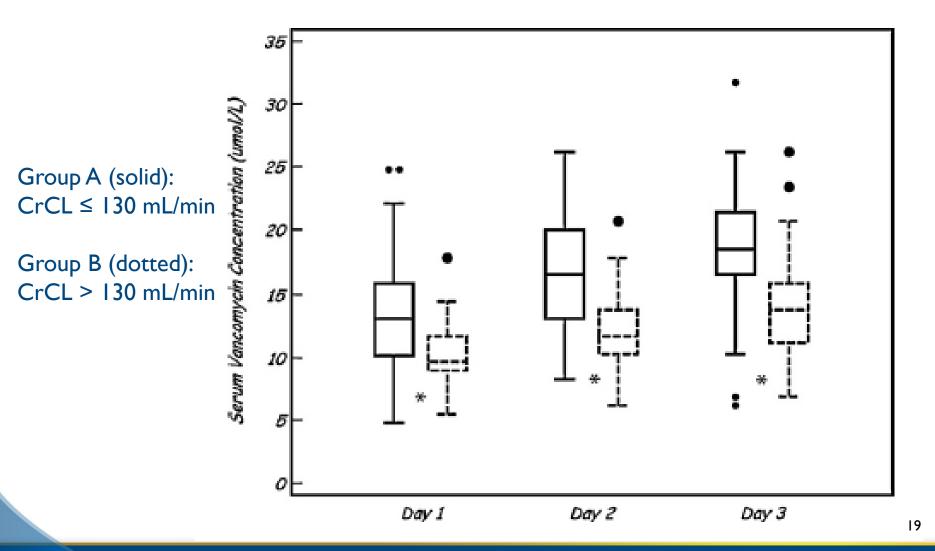


Piperacillin/tazobactam Dose with ARC

Design	Single-centerObservational
Population	 n = 48 Ages 18 - 80 Sepsis
Intervention	 Piperacillin/tazobactam 4.5 grams every 6 hours over 20 minutes Antibiotic plasma concentrations at several time points; C_{min}= 360 minutes post infusion 24-hour urine collection

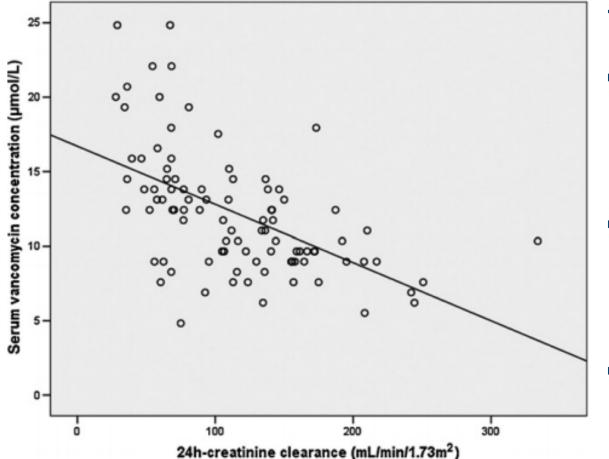
Probability of Target Attainment

Udy, et al. Critical Care 2015(19):28


17

Vancomycin Optimization with ARC

Design	 Prospective Single-center Observational cohort study
Population	 n = 93 Severe sepsis or septic shock Ages 18 - 80 Ventilated
Intervention	 Vancomycin loading dose followed by 30 mg/kg/day infusion over 24 hours Daily analysis of serum vancomycin levels (Days 1 to 3) 24-hour urine collection Compare CrCL ≤ 130 mL/min and CrCL > 130 mL/min



Median Serum Vancomycin Concentrations

Vancomycin Concentration and CrCL

Take Away:

- Direct correlation of vancomycin concentration and CrCI
- Day I of therapy: 90% of the ARC group subtherapeutic*
 More aggressive dose
 - strategy

*Following a load and infusion started on Day 0

MEDICINE of THE HIGHEST ORDER Baptista, et al. Int Journ of Antimicrobial Agents 2012;39:420-3

ARC AND CLINICAL OUTCOMES

Mortality in Enterobacteriaceae Bloodstream Infections

Design	Retrospective cohort study
Population	 n = 494 Sepsis, severe sepsis or septic shock with positive blood culture of any Enterobacteriaceae organism Age ≥ 18 years old
Intervention	 Determine whether ARC was prevalent and if it impacts mortality Calculated CrCL: MDRD and CKD-EPI ARC defined as CrCL > I 30 mL/min/I.73m²

ARC and Clinical Outcomes

- Only 5% had ARC
- Multivariate logistic regression analysis, ARC did not influence 30-day mortality

	GFR* ≤ 130 mL/min/1.73m ² n = 467	GFR* > 130 mL/min/1.73m ² n = 27	p-value
ICU length of stay, mean days (range)	0.8 (0-4.8)	0.9 (0-4.7)	0.913
30-day mortality, n (%)	64 (13.1)	3 (11.1)	I

* By CKD-EPI or MDRD

Continuous vs. Intermittent Beta Lactam Therapy and Clinical Outcomes

Design	 Sub-study of the BLING-II trial Randomized Placebo-controlled Multicenter (25 ICUs)
Population	 n = 432 Severe sepsis receiving piperacillin/tazobactam, ticarcilin/clavulanic acid or meropenem by continuous or intermittent infusion
Intervention	 Loading dose and randomized to continuous infusion or intermittent infusion Measured CrCL ARC defined as CrCL ≥ 130 mL/min

Comparison of Clinical Outcomes

	All Patients n = 254	$\begin{array}{c} No ARC & ARC \\ CrCL < I30 mL/min & CrCL \ge I30 mL/min \\ n = 209 & n = 45 \end{array}$		p-value	
ICU free days at day 28, median (IQR)	21(11-24)	21 (11-25)	21 (12-24)	0.89	
Clinical cure at 14 days post antibiotic, n (%)	148 (58.3)	115 (55.0)	33 (73.3)	0.024	
Length of ICU stay, median days (IQR)	6 (3-11)	5 (3-11)	7 (4-12)	0.37	
90-day mortality, n (%)	47 (18.5)	41 (19.6)	6 (13.3)	0.33	

Comparison of Continuous vs. Intermittent Beta Lactam Administration

	ARC CrCL ≥ 30 mL/min n = 45			No ARC CrCL < 130 mL/min n = 209		
	Cl n = 19	ll n = 26	p-value	Cl n = 103	II n = 106	p-value
ICU free days at day 28, median (IQR)	20 (10-24)	23 (16-24)	0.44	20 (11-24)	22 (10-25)	0.40
Clinical cure at 14 days post antibiotic, n (%)	14 (73.7)	19 (73.1)	0.96	60 (58.3)	55 (51.9)	0.36
90-day mortality, n (%)	2 (10.5)	4 (15.4)	0.64	19 (18.4)	22 (20.8)	0.67

CI: Continuous infusion beta lactam II: I

II: Intermittent infusion beta lactam therapy

Summary

- ARC is not fully understood
- Calculated CrCL does not correlate well with measured CrCL
- •Consider measured CrCL and suspect ARC in high risk patients who may not be clinically improving as expected
- •The current literature does not suggest ARC affects clinical outcomes

Augmented Renal Clearance: Let's Get the Discussion Flowing

Terry Makhoul, PharmD

PGY-2 Pharmacy Resident, Emergency Medicine

University of Rochester Medical Center Strong Memorial Hospital

