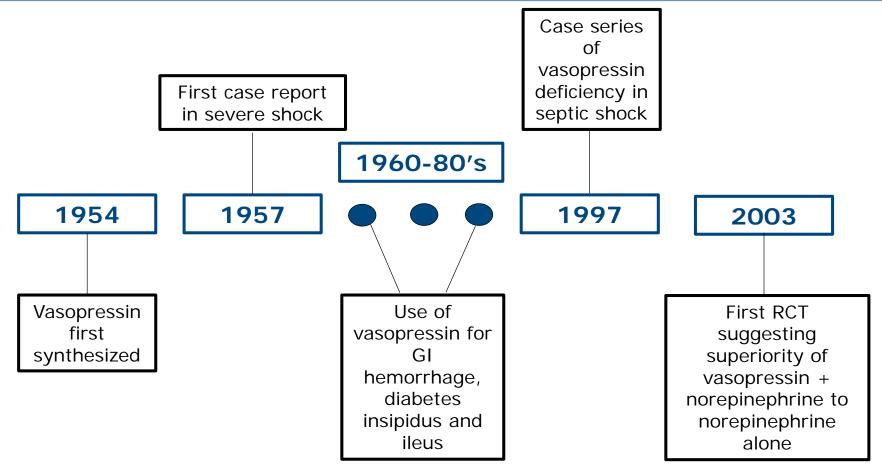
Lights, Camera, (Vaso)Action! Vasoactive Agents for Catecholamine Refractory Septic Shock

> Gregory Kelly, Pharm.D. PGY2 Emergency Medicine Pharmacy Resident University of Rochester Medical Center October 28, 2017

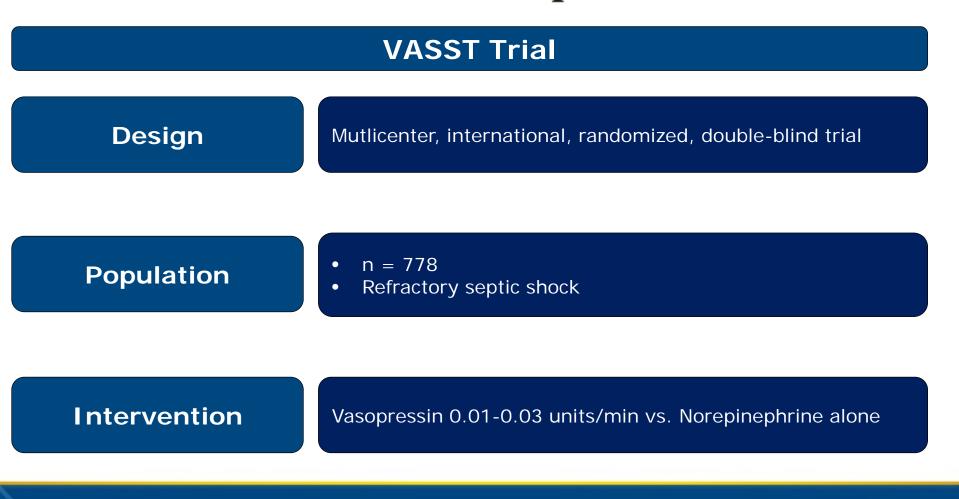
I have no conflicts of interest to disclose

1. Discuss the currently available literature evaluating angiotensin II as a treatment modality for septic shock.

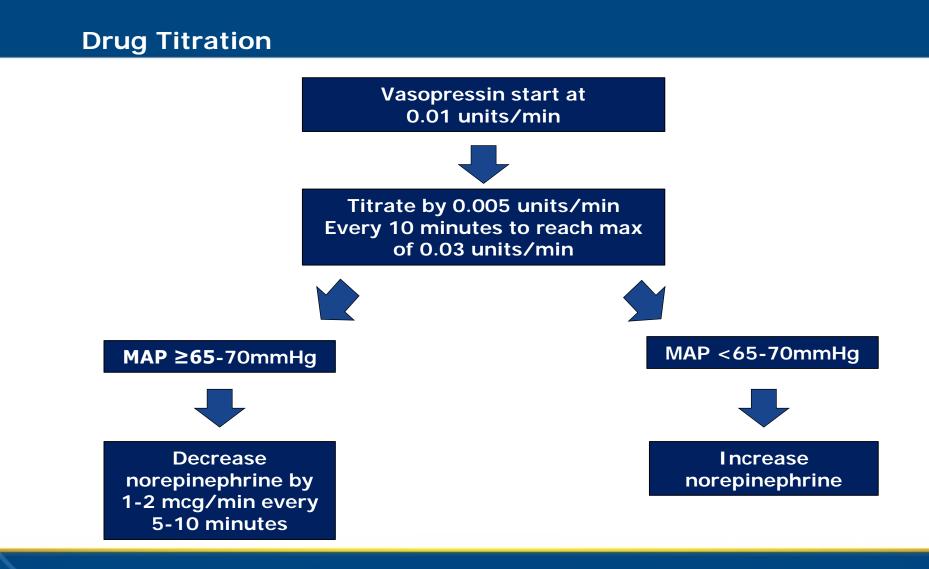

2. Interpret the results of the ATHOS-3 trial and its applicability to the management of patients with septic shock.

Vasopressin

Vasopressin: A History

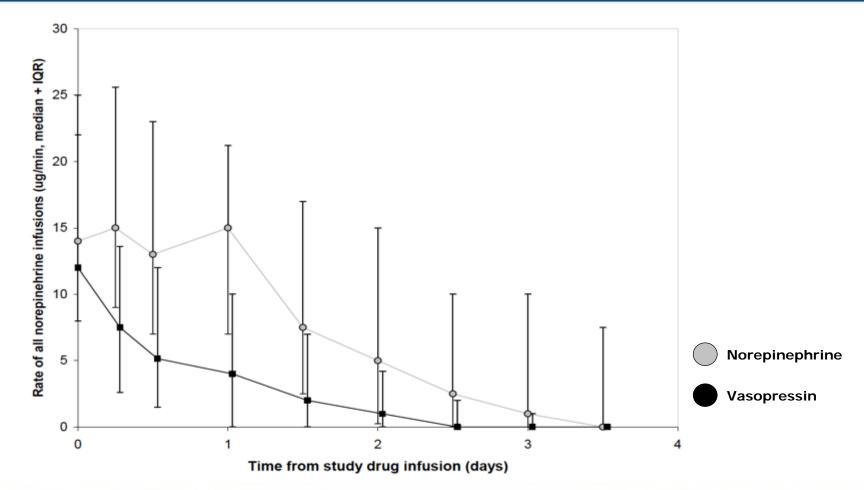


MEDICINE of THE HIGHEST ORDER

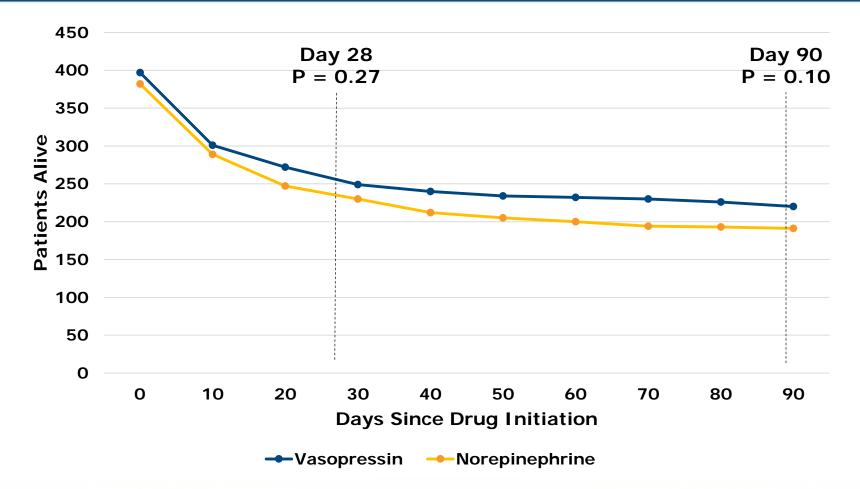

Matis-Gradwohl I, et al. Crit Care. 2013;17:1002.

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

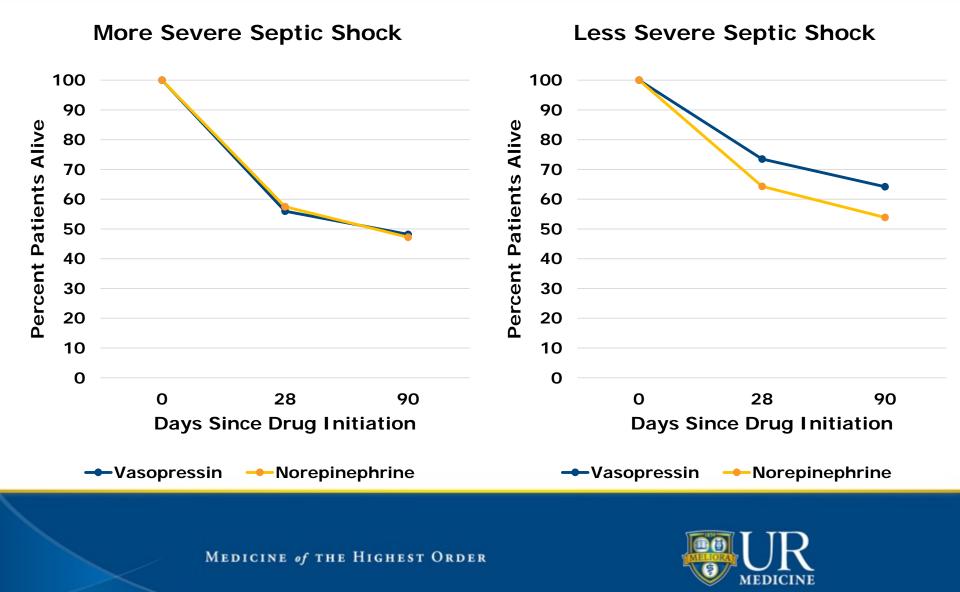
MEDICINE of THE HIGHEST ORDER



MEDICINE of THE HIGHEST ORDER


Norepinephrine Requirements

MEDICINE of THE HIGHEST ORDER


Mortality

MEDICINE of THE HIGHEST ORDER

Subgroup Analyses

Secondary Outcomes

Organ Dysfunction

Vasopressor free days Ventilator free days Renal replacement free days Organ failure free days SIRS free days

No significant differences

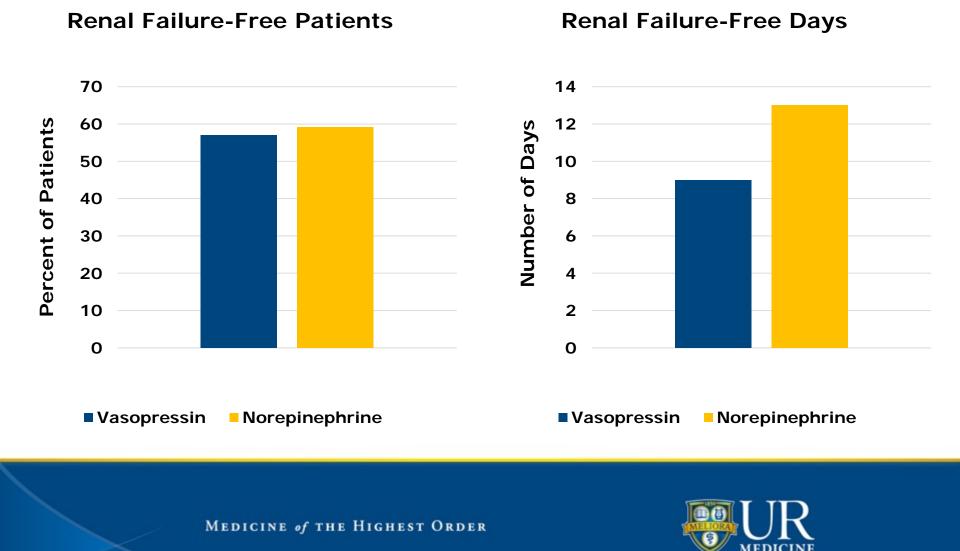
Adverse Effects

Acute myocardial infarction Cardiac arrest Life-threatening arrhythmia Digital ischemia Cerebrovascular accident

No significant differences

MEDICINE of THE HIGHEST ORDER

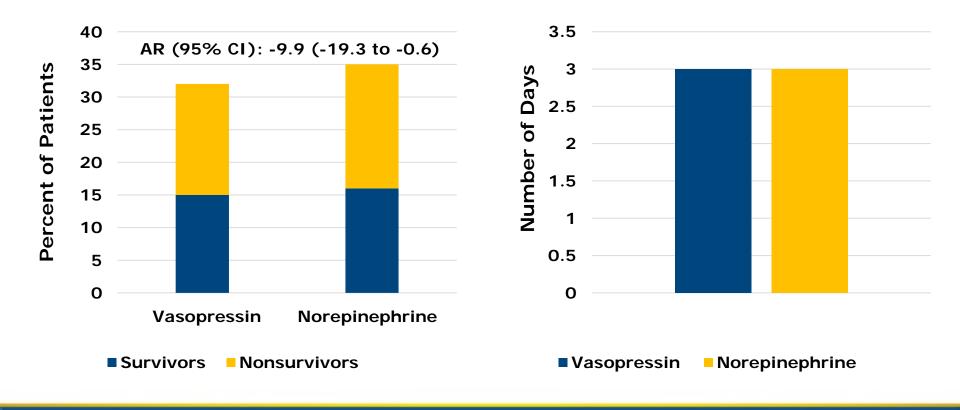
Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock The VANISH Randomized Clinical Trial


Design	2x2 factorial, multicenter, double-blind, randomized controlled trial	
Population	 n = 409 Refractory septic shock 	
Intervention	Vasopressin titrated up to 0.06 units/minNorepinephrineWith placeboWith placebo	
	With hydrocortisone With hydrocortisone	

MEDICINE of THE HIGHEST ORDER

Gordon AC, et al. JAMA. 2016; 316: 509-518.

Primary Outcome



Gordon AC, et al. JAMA. 2016;316:509-518.

Renal Replacement Therapy (RRT)

Rate of RRT

Duration of RRT

MEDICINE of THE HIGHEST ORDER

Gordon AC, et al. JAMA. 2016; 316: 509-518.

Cost Considerations

Pre-April 2014

0.04 unit/min IV infusion Average wholesale price (AWP): **\$8.67/day**

April 2014

Vasopressin rebranded with indication for catecholamine refractory vasodilatory shock

April 2014-present

0.04 unit/min IV infusion Average wholesale price (AWP): **\$415.80/day**

MEDICINE of THE HIGHEST ORDER

Curtis N, et al. Am J Health-Syst Pharm. 2017;74:105-6.

Take Home Points

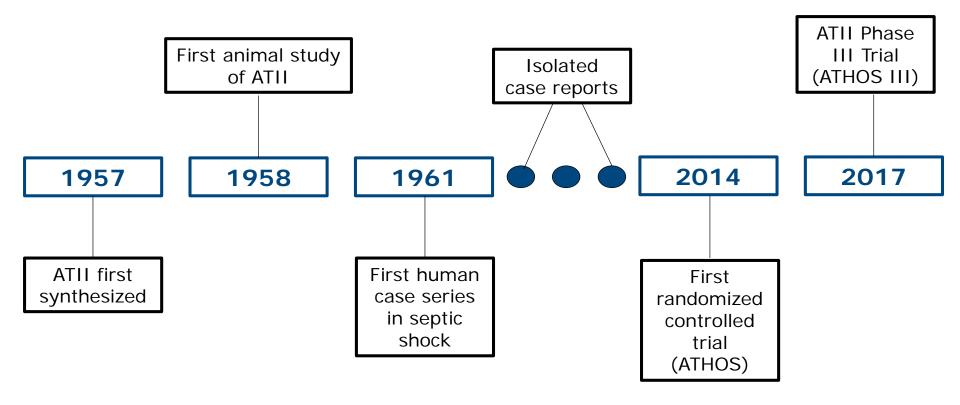
•Early Scientific Data

Observed decreased secretion of vasopressin in patients with septic shock
Suggested potential for vasopressin to reduce catecholamine dose requirements and improve outcomes in patients with septic shock

•VASST & VANISH Trials

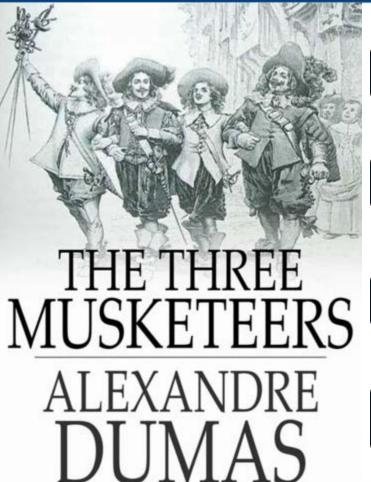
No improvement in mortality with addition of vasopressin to catecholamine therapy
No reduction in adverse effects or outcomes with addition of vasopressin to

catecholamine therapy


•Bottom Line

•No strong evidence to support benefit of adding vasopressin to catecholamine therapy

Angiotensin II



MEDICINE of THE HIGHEST ORDER

The Three Musketeers

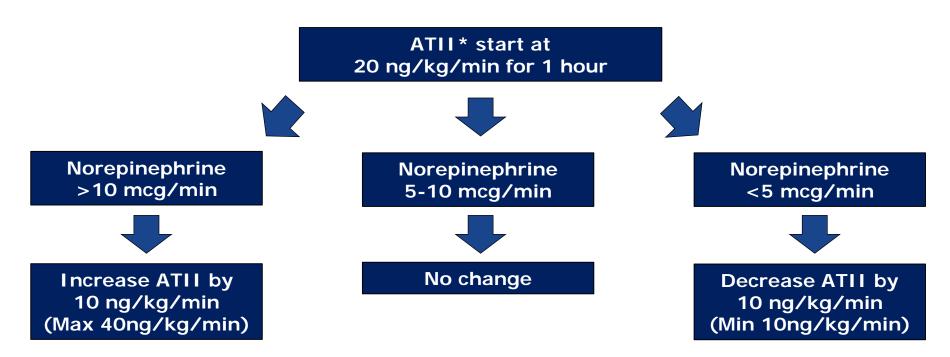
D'artagnan: Impetuous, hotheadedEpinephrinePorthos: Muscular, boisterous, vainNorepinephrineAramis: Sophisticated, pensiveVasopressin

Athos: Leader of the musketeers, mysterious, secretive


Angiotensin II

MEDICINE of THE HIGHEST ORDER

Bellomo R, et al. Crit Care Resusc. 2017; 19: 3-4.


Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study

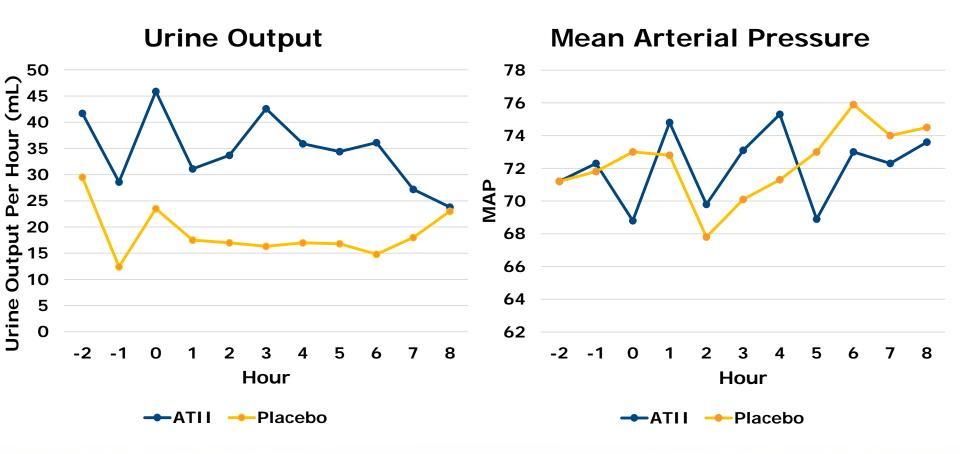
MEDICINE of THE HIGHEST ORDER

Drug Titration

Infusions co-titrated to maintain mean arterial pressure (MAP) of 65

Assessments repeated every hour for 6 hours

MEDICINE of THE HIGHEST ORDER

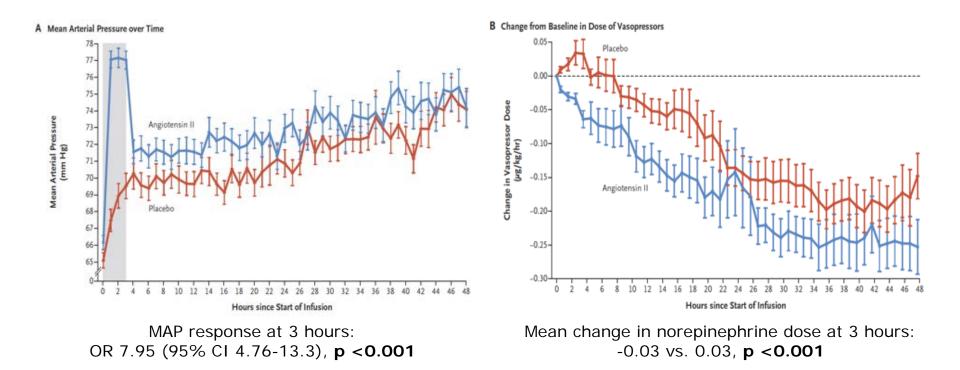

Primary Outcome

MEDICINE of THE HIGHEST ORDER

Secondary Outcomes

MEDICINE of THE HIGHEST ORDER

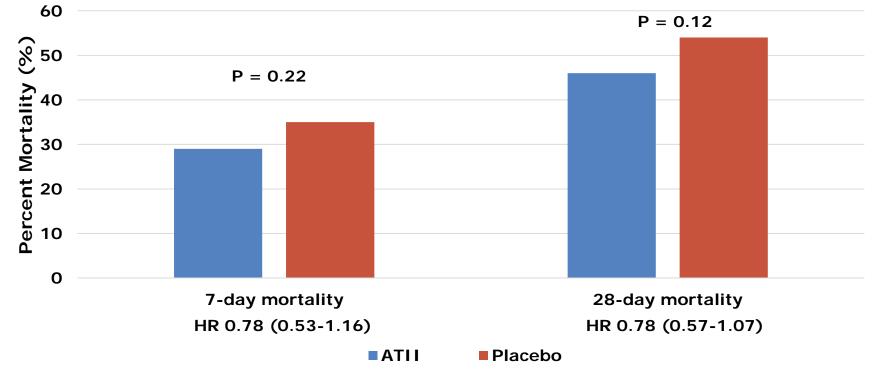
Angiotensin II for the Treatment of Vasodilatory Shock


ΔΤΗ	OS-3	Trial
	03-3	Па

Design	Phase III, international, multicenter, randomized, placebo- controlled trial	
Population	 n = 321 Refractory septic shock 	
Intervention	ATII vs. Norepinephrine alone	

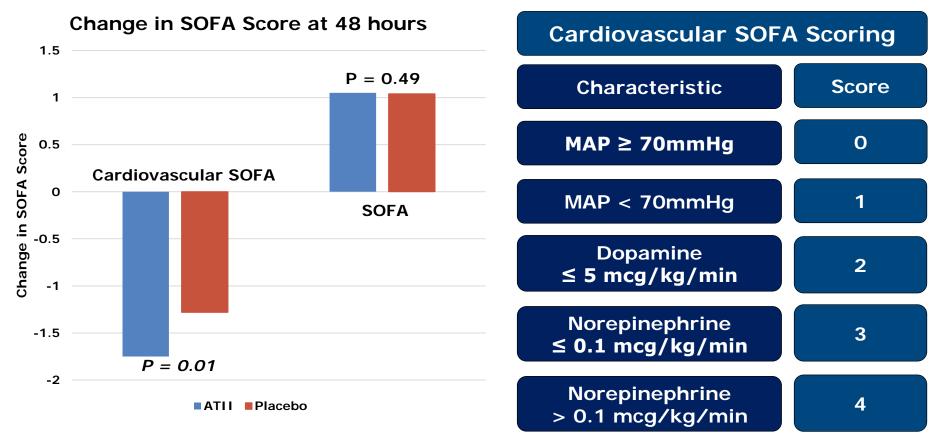
MEDICINE of THE HIGHEST ORDER

Primary Outcome



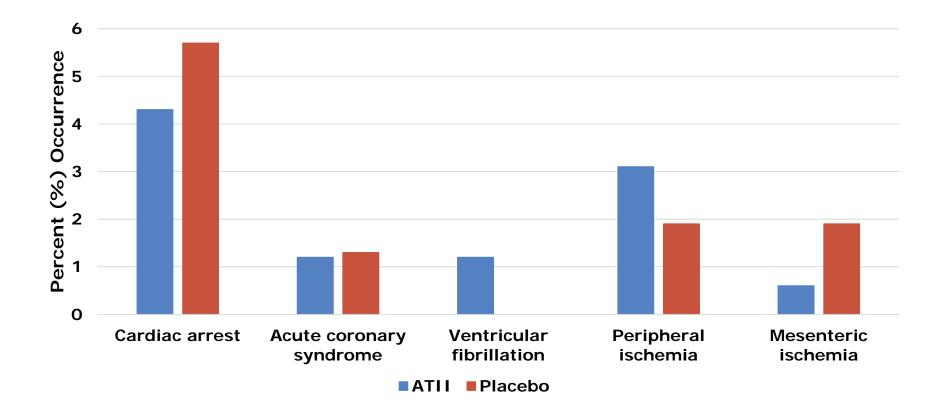
MEDICINE of THE HIGHEST ORDER

ATHOS 3: Secondary Outcomes



MEDICINE of THE HIGHEST ORDER

SOFA Scores



SOFA: Sequential Organ Failure Assessment Score

MEDICINE of THE HIGHEST ORDER

Adverse Events

Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study

Lakhmir S Chawla^{1,3*}, Laurence Busse², Ermira Brasha-Mitchell³, Danielle Davison³, Jacqueline Honiq³, Ziyad Alotaibi⁴ and Michael G Seneff³

Angiotensin II for the Treatment of High-Output Shock 3 (ATHOS-3): protocol for a phase III, double-blind, randomised controlled trial

> Lakhmir S Chawla, James A Russell, Sean M Bagshaw, Andrew D Shaw, stuart L Goldstein, Mitchell P Fink and George F Tidmarsh

Angiotensin II for the Treatment of Vasodilatory Shock

Ashish Khanna, M.D., Shane W. English, M.D., Xueyuan S. Wang, M.D., Kealy Ham, M.D., James Tumlin, M.D., Harold Szerlip, M.D., Laurence W. Busse, M.D., Laith Altaweel, M.D., Timothy E. Albertson, M.D., M.P.H., Ph.D., Caleb Mackey, M.D., Michael T. McCurdy, M.D., David W. Boldt, M.D., Stefan Chock, M.D., Paul J. Young, M.B., Ch.B., Ph.D., Kenneth Krell, M.D., Richard G. Wunderink, M.D., Marlies Ostermann, M.D., Ph.D., Raghavan Murugan, M.D., Michelle N. Gong, M.D., Rakshit Panwar, M.D., Johanna Hästbacka, M.D., Ph.D., Raphael Favory, M.D., Ph.D., Balasubramanian Venkatesh, M.D., B. Taylor Thompson, M.D., Rinaldo Bellomo, M.D., Jeffrey Jensen, B.S., Stew Kroll, M.A., Lakhmir S. Chawla, M.D., George F. Tidmarsh, M.D., Ph.D., and Adam M. Deane, M.D., for the ATHOS-3 Investigators*

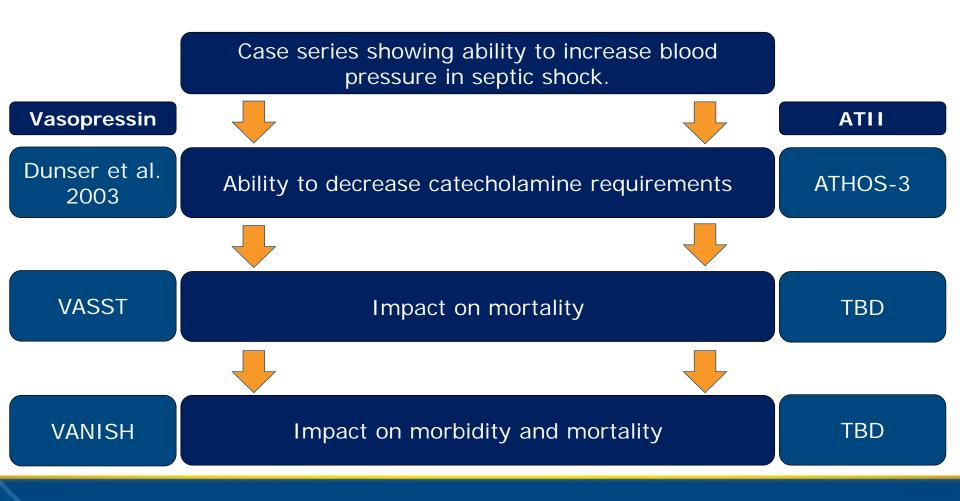
Lakhmir Chawla and George Tidmarsh are employees of and own stock in La Jolla Pharmaceutical Company, are medical monitors for the study, and have assigned patents relating to the use of angiotensin II for hypotension.

Take Home Points

•ATHOS & ATHOS 3 trials

ATII increases MAP and decreases norepinephrine dose requirements
No significant differences in clinically significant outcomes

Clinical Application


ATII represents an option to increase MAP in catecholamine refractory patients with vasodilatory shock
Evidence to support clinical benefits of using ATII at this time are lacking

Areas for Future Research

Larger studies powered to investigate clinically significant outcomes
Subgroup analyses to determine patient populations in which ATII may be preferable to standard of care

Vasopressin versus Angiotensin II

Conclusions

Morbidity and mortality in septic shock remain high despite current standard of care

Vasopressin and angiotensin II represent options to assist in hemodynamic maintenance in catecholamine refractory septic shock.

Current evidence does not support the use of vasopressin to reduce morbidity or mortality in catecholamine refractory septic shock.

Angiotensin II has not yet been demonstrated to improve morbidity or mortality, however further evidence is needed to determine a potential role in therapy.

Questions?

Gregory Kelly, Pharm.D.

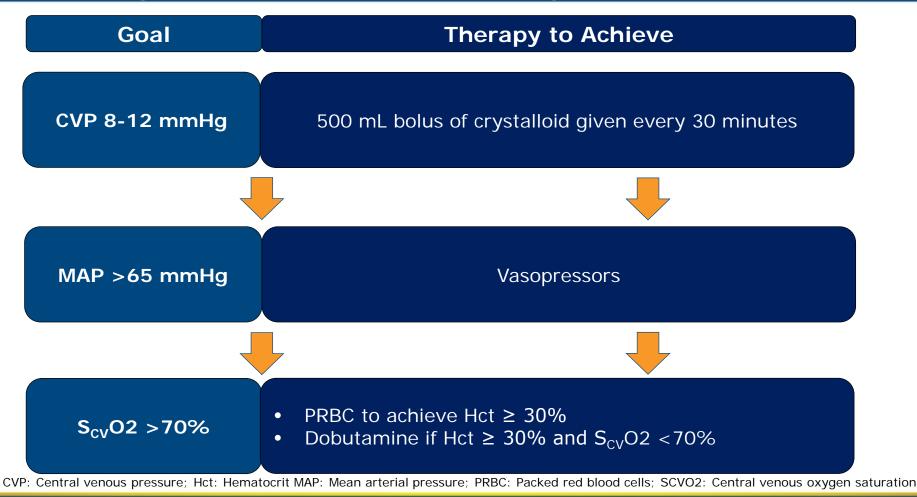
PGY2 Emergency Medicine Pharmacy Resident

September 27, 2017

gregory_kelly@urmc.rochester.edu

EARLY GOAL-DIRECTED THERAPY IN THE TREATMENT OF SEVERE SEPSIS AND SEPTIC SHOCK

EMANUEL RIVERS, M.D., M.P.H., BRYANT NGUYEN, M.D., SUZANNE HAVSTAD, M.A., JULIE RESSLER, B.S.,


Design	Randomized controlled trial	In Hospital Mortality
Population	 n = 263 Patients presenting to ED with severe sepsis or septic shock 2 of 4 SIRS criteria SBP <90 mmHg (after fluid resuscitation*) Lactate >4 mmol/L 	60 56.8 50 46.5 40 42.3 40 30.5 30 60 46.5 50 46.5 50 46.5 50 40 42.3 50 Control EGDT 14.9 10 14.9
Intervention	Early goal-directed therapy or standard care	
Outcomes	Primary: In-hospital mortality	All patients* Severe Septic sepsis* shock* *Denotes statistical significance

ED: Emergency department; EGDT: Early goal-directed therapy; SIRS: Systemic inflammatory response syndrome; SBP: Systolic blood pressure

Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med 2001;345(19)1368-77.

Early Goal Directed Therapy

Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med 2001; 345(19)1368-77.

MEDICINE of THE HIGHEST ORDER

Kumar A, et al. Critical Care Medicine: Principles of Diagnosis and Management in the Adult, 21, 299-324.

Surviving Sepsis Campaign Bundle

Within 3 Hours

Measure lactate

Obtain blood cultures prior to administration of antibiotics

Administer broad spectrum antibiotics

Administer 30 mL/kg crystalloid for hypotension or lactate >4 mmol/L

Within 6 Hours

Administer vasopressors for hypotension refractory to fluid resuscitation to maintain MAP > 65 mmHg

Re-measure lactate if initial lactate elevated

Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43(3):304-377

MEDICINE of THE HIGHEST ORDER

Kumar A, et al. Critical Care Medicine: Principles of Diagnosis and Management in the Adult, 21, 299-324.

Surviving Sepsis Bundle in Practice

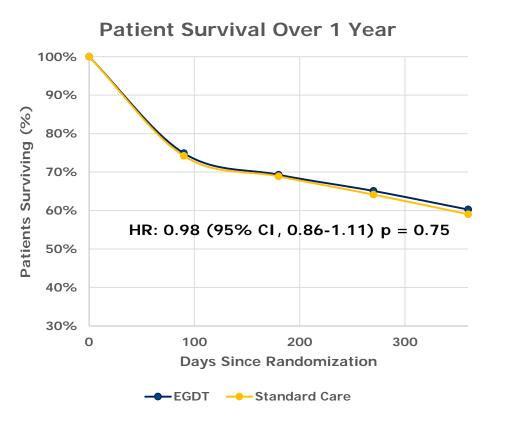
Trial	Study Population	Intervention	Conclusion
ProCESS (2014)	n = 1343 31 United States academic center	EGDT vs. Protocolized standard care vs. Standard care	No difference in all-cause in-hospital mortality at 60 days
ARI SE (2014)	n = 1591 51 centers in Australasia	EGDT vs. Standard care	No difference in all-cause mortality at 90 days
PROMISE (2015)	n = 1260 56 sites in United Kingdom	EGDT vs. Standard care	No difference in mortality or clinically important outcomes at 90 days

Angus DC, et al. "A randomized trial of protocol-based care for early septic shock". *The New England Journal of Medicine*. 2014. 370(10):1683-1693. ARISE and ANZICS writers. "Goal-directed resuscitation for patients with early septic shock". *The New England Journal of Medicine*. 2014. 371(16):1496-1506EDICINE of THE HIGHEST ORDER Mouncey PR, et al. "Trial of early, goal-directed resuscitation for septic shock". *The New England Journal of Medicine*. 2015. 372(14):1301-1311.

ORIGINAL ARTICLE

Early, Goal-Directed Therapy for Septic Shock — A Patient-Level Meta-Analysis

The PRISM Investigators*


Design	Meta-analysis of patient data from ProCESS, ARISE, and PROMISE trials
Population	 n = 3273 138 hospitals in 7 countries
Outcomes	 Primary: All-cause mortality at 90 days Secondary: In-hospital mortality 28-day mortality Duration of survival to one year Duration of hospital stay Duration of mechanical ventilation, vasopressors, and renal replacement therapy Costs and cost-effectiveness at 90 days

The PRISM Investigators. Early, goal-directed therapy for septic shock- a patient level meta-analysis. New Engl J Med 2017; 376: 2223-34.

MEDICINE of THE HIGHEST ORDER

PRISM: Results

Need for Organ Support Hazard Ratio Type (% receiving) 1.05 (0.89 to 1.24) Mechanical Ventilation p = 0.57Vasopressors or 1.42 (1.23 to 1.64) Inotropes p = < 0.001**Renal Replacement** 1.02 (0.81 to 1.28) p = 0.88Therapy

Conclusion: No significant difference with EGDT in patient survival.

The PRISM Investigators. Early, goal-directed therapy for septic shock- a patient level meta-analysis. New Engl J Med 2017; 376: 2223-34.

MEDICINE of THE HIGHEST ORDER

What Is the Harm?: Fluids

•Positive Fluid Balances Associated with Mortality

- Sadaka et al. (2014)
 - Positive balance at 24 hours increased risk of mortality

• HR 1.519 (1.353 to 1.685) for 12-L (+) vs. 6-L (+).

- Sirvent et al. (2015)
 - Positive balance at 48, 72, and 96 hours increased risk of mortality
- Boyd et al. (2011)
 - More positive fluid balances at 12 hours and 4 days correlated with mortality.
 - Survival was highest in patients 3-L (+) at 12 hours.
- Micek et al. (2013)
 - Non-survivors of septic shock had higher positive fluid balance
 - 4374 mL vs. 2959 mL, p = 0.004
- Marik et al. (2017)
 - Review of premier hospital database (n= 23,513)

2.3% increased mortality with each liter above 5 L

Sadaka F, et al. J Intensive Care Med. 2014;29(4):213-7. Sirvent J, et al. Am J Emerg Med. 2015;33(2):186-9. Boyd JH, et al. Crit Care Med. 2011;39(2): 259-265. MEDICINE of THE HIGHEST ORDER Micek ST, et al. Crit Care. 2013:17:R246. Marik PE, et al. Intensive Care Med 2017; 43:625–632. Kumar A, et al. Critical Care Medicine: Principles of Diagnosis and Management in the Adult, 21, 299-324.

What is the Harm?: Catecholamines

- Schmittinger (2012)
 - Surgical intensive care unit patients
 - Factors independently associated with adverse cardiac events:
 - Number catecholamine vasopressors: OR 1.73; 95% CI 1.08-2.77; p = 0.02
 - Duration of catecholamine vasopressor therapy: OR 1.01; 95% CI 1-1.01; p = 0.002
 - Patients with adverse cardiac events had higher mortality: 25.9% vs. 1.7%, p < 0.001

Catecholamine	Adverse Effects
Norepinephrine	Tachycardia Peripheral/GL ischemia
Epinephrine	Tachycardia Peripheral/GL ischemia
Dopamine	Tachycardia Arrhythmias
Phenylephrine	Reflex bradycardia

Schmittinger CA, Torgersen C, Luckner G, et al. Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med. 2012; 38(6):950-958. Belletti A, Castro ML, Silvetti S, et al. The effect of inotropes and vasopressors on mortality: a methana ysis of rindomized clinical trials. Br J Anaesth. 2015/1015(5):656f75HE HIGHEST ORDER

Design	Prospective, randomized, controlled study
Population	 n = 48 Vasodilatory shock due to cardiovascular surgery or sepsis MAP <70 mmHg Refractory to: Volume resuscitation (fluid administration based on stroke volume response) High-dose vasopressors (> 0.5 mcg/kg/min norepinephrine)
Intervention	 Vasopressin 4 units/h + standard of care Or Standard of care
Outcomes	 Primary: "Differences in hemodynamics between groups during 48-h observation period" Secondary: Changes in single-organ function GI mucosal: gut mucosal PrCO₂ to arterial PrCO₂ gradient Acid-base: arterial lactate, pH Renal: SCr Hepatic: AST, ALT, Tbili Heme: Platelets Cardiac: Troponin

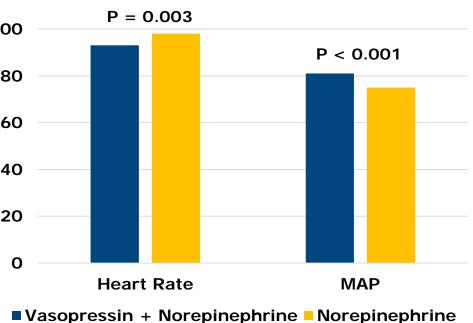
Dunser MW, Mayr AJ, Ulmer H, et al. Arginine vasopressin in advanced vasodilatory shock. Circulation. 2003;107:2313-9.

MEDICINE of THE HIGHEST ORDER

Difference
$PrCO_2$: 63±25 vs. 67±24, p = 0.03 $Pr-aCO_2$: 20±24 vs. 21±24, p = 0.014
Not significant
Not significant
AST, ALT: No difference Bilirubin: 9.26 ± 5.81 vs. 3.86 ± 5.56 , p = 0.001
Not significant
Not significant

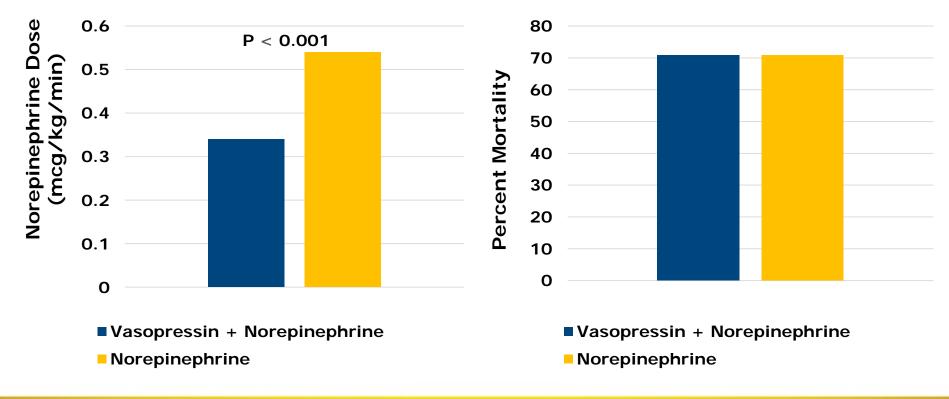
ICU Mortality: 70.8% vs. 70.8%, p = 1

Conclusion: Vasopressin improved MAP and lowered Norepinephrine dose requirements, without observed impact on mortality


Dunser MW, Mayr AJ, Ulmer H, et al. Arginine vasopressin in advanced vasodilatory shock. Circulation. 2003;107:2313-9.

MEDICINE of THE HIGHEST ORDER

Design:	120
Prospective, randomized controlled trial	100
	80
Population: • n = 48	60
 Refractory vasodilatory shock 	40
	20
Intervention: Vasopressin 0.06 units/min vs.	0
Norepinephrine alone)


MEDICINE of THE HIGHEST ORDER

Dunser MW, et al. Circulation. 2003;107:2313-9.

Norepinephrine Dose Requirements

ICU Mortality

MEDICINE of THE HIGHEST ORDER

Dunser MW, et al. Circulation. 2003;107:2313-9.

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

VASST Trial		
Design	Multicenter, international, randomized, double-blind trial	
Population	 n = 778 Septic shock (Surviving Sepsis Campaign definition) SBP < 90 mmHg Refractory to: Volume resuscitation (After 500mL of normal saline) OR High-dose vasopressors (> 5 mcg/min norepinephrine) for at least six hours 	
Intervention	 Vasopressin 0.6-1.8 units/h + standard of care Or Norepinephrine 5-15 mcg/min + standard of care 	
Outcomes	 Primary: 28 day all-cause mortality Secondary: 90-day mortality Days alive and free of (through day 28) Organ dysfunction, vasopressors, mechanical ventilation, renal replacement therapy, SIRS, corticosteroid use Hospital and ICU length of stay Rates of serious adverse events 	

Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. New Engl J Med. 2008; 358: 877-87.

MEDICINE of THE HIGHEST ORDER

VASST Trial: Organ Dysfunction Outcomes

Variable	Norepinephrine	Vasopressin	P-value
Vasopressor free days	17 (0-24)	19 (0-24)	0.58
Ventilator free days	6 (0-20)	8.5 (0-20)	0.61
Renal replacement free days	23 (5-28)	25 (6-28)	0.64
Organ failure free days	0 (0-6)	0 (0-9)	0.14
SIRS free days	6 (0-15)	6 (0-18)	0.21

MEDICINE of THE HIGHEST ORDER

Russell JA, et al. New Engl J Med. 2008;358:877-87.

VASST Trial: Serious Adverse Events

Variable	Norepinephrine	Vasopressin	P-value
Acute myocardial infarction or ischemia	1.8%	2.0%	1.00
Cardiac arrest	2.1%	0.8%	0.14
Life-threatening arrhythmia	1.6%	2.0%	0.79
Acute mesenteric ischemia	3.4%	2.3%	0.39
Hyponatremia	0.3%	0.3%	1.00
Digital ischemia	0.5%	2.0%	0.11
Cerebrovascular Accident	0.3%	0.3%	1.00

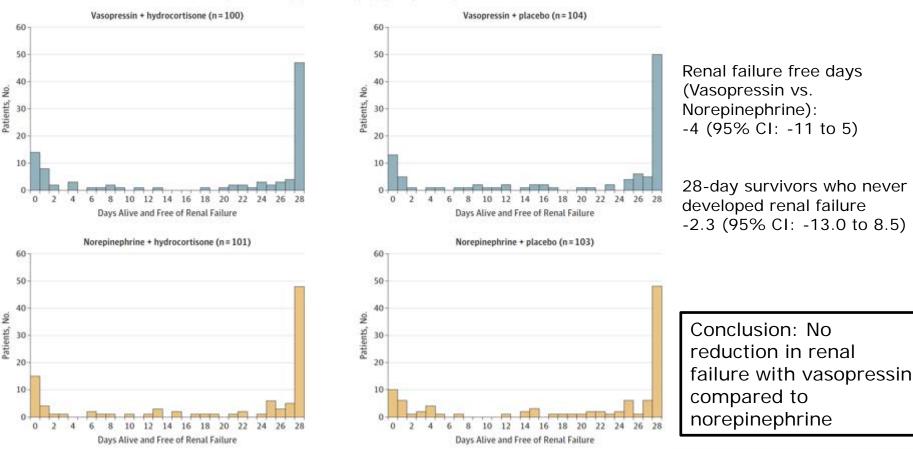
Conclusion: Addition of vasopressin did not reduce occurrence of serious adverse events compared to norepinephrine.

Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. New Engl J Med. 2008; 358: 877-87.

MEDICINE of THE HIGHEST ORDER

Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock

The VANISH Randomized Clinical Trial


Design	2x2 factorial, multicenter, double-blind, randomized controlled trial
Population	 n = 409 Septic shock (Surviving Sepsis Campaign definition) "Hypotension requiring vasopressors" Refractory to: "Adequate" volume resuscitation (assessed by clinical examination)
Intervention	 Vasopressin (titrated up to 0.06 units/min) + hydrocortisone OR Vasopressin + placebo OR Norepinephrine + hydrocortisone OR Norepinephrine + placebo
Outcomes	 Primary: Renal failure free days through day 28 Secondary: Rate of renal replacement therapy Mortality Serious adverse events

Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. JAMA. 2016;316(5):509-518.

MEDICINE of THE HIGHEST ORDER

VANISH Trial: Primary Outcome

Kidney failure-free days per treatment group (primary outcome)

Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. JAMA. 2016;316(5):509-518.

MEDICINE of THE HIGHEST ORDER

Gordon AC, et al. JAMA. 2016;316:509-518.

Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study

Lakhmir S Chawla^{1,3*}, Laurence Busse², Ermira Brasha-Mitchell³, Danielle Davison³, Jacqueline Honiq³, Ziyad Alotaibi⁴ and Michael G Seneff³

Design	Randomized controlled trial
Population	 n = 20 High output shock Cardiovascular SOFA score of 4 Cardiac index (CI) > 2.4 L/min/BSA 1.73 m² Adequately fluid resuscitated Such that fluid bolus would not increase CI by 15%
Intervention	 ATII infusion + standard of care Or Placebo + standard of care
Outcomes	 Primary: Effect of ATII on norepinephrine dose requirements Secondary: Effect of ATII on urine output, serum lactate, cardiac output, and 30-day mortality

Chawla LS, Busse L, Brasha-Mitchell E, et al. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014;18:534

MEDICINE of THE HIGHEST ORDER

Angiotensin II for the Treatment of Vasodilatory Shock

Design	Phase III, international, multicenter, randomized, placebo-controlled trial
Population	 n = 321 Vasodilatory shock CI > 2.3 L/min/m² MAP 55-70 mmHg Refractory to: Volume resuscitation (25 mL/kg in past 24 hours) High-dose vasopressors (> 2 mcg/min norepinephrine)
Intervention	 ATII infusion + standard of care Or Placebo + standard of care
Outcomes	 Primary: MAP at 3 hours (response defined as increase ≥10 mmHg or increase to ≥75 without increases in background vasopressors) Secondary: Change in cardiovascular SOFA score Change in SOFA score Adverse events All-cause mortality at 7 and 28 days

Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. New Engl J Med. 2017; 377:419-30

MEDICINE of THE HIGHEST ORDER

