Shock and Awe: A dynamic approach to resuscitation

Critical Care Symposium
October 28, 2017
Anna Perrello, RPA-C, MPAS
Brian Kersten, PharmD, BCCCP, BCPS
Disclosures

• Brian Kersten
 o Nothing to disclose

• Anna Perrello
 o Nothing to disclose
Objectives

• Identify and explain the physiology of various shock states including distributive, cardiogenic, obstructive and hypovolemic.
• Discuss advantages and limitations to static and dynamic predictors of volume responsiveness.
• Recognize techniques related to visualization of basic structures and medium identification during bedside ultrasonography.
• Evaluate treatment options for shock states using dynamic measures for fluid resuscitation
Shock

• A heterogenous syndrome best defined as circulatory failure
 o Originates from mismatch between oxygen delivery (DO_2) and oxygen consumption (VO_2)

• Often becomes apparent in setting of arterial hypotension
Differentiating Shock

<table>
<thead>
<tr>
<th></th>
<th>Wedge pressure</th>
<th>Cardiac output</th>
<th>Systemic vascular resistance</th>
<th>Mixed venous oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hemorrhage</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>- Dehydration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Myocardial infarction</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>- Arrhythmia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pulmonary embolism</td>
<td>↑↔</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>- Tension pneumothorax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cardiac tamponade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Septic shock</td>
<td>↑↔</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>- Anaphylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Neurogenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Myxedema coma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Post-cardiopulmonary bypass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Goals of Therapy in Shock

1. Restore effective tissue perfusion and normalize cellular metabolism by ensuring systemic oxygen delivery by
 1. Aggressive and appropriate fluid resuscitation
 2. Supporting CO and MAP

2. Above are titrated to individual endpoints and used together to assess adequacy of resuscitation
 1. Markers suggesting adequate tissue perfusion
 2. Markers suggesting adequate intravascular volume
 3. Target MAP
Shock and Awe

- Military doctrine of rapid dominance
Question

• Global (macrocirculatory) oxygen delivery (DO₂) can be best approximated by which variable?
 1. Arterial partial pressure of oxygen (PaO₂)
 2. Arterial oxygen saturation (SaO₂)
 3. Hemoglobin
 4. Systemic vascular resistance (SVR)
 5. Stroke volume (SV)
Global Tissue Perfusion

• ‘Macrocirculation’
 o $DO_2 = CO \times CaO_2$
 o $DO_2 = (SV \times HR) \times ([0.0138 \times Hgb \times SaO2] + [0.0031 \times PaO2])$
 • Increasing hemoglobin and oxygen produce minimal changes in oxygen delivery
 • Heart rate is generally at maximum compensation, therefore
 o $DO_2 = SV \times (HR) \times ([0.0138 \times Hgb \times SaO2] + [0.0031 \times PaO2])$

• Regional tissue perfusion (microcirculation)
 • Not predicted by DO_2
Assessing perfusion

Physical Exam

• Mean arterial pressure
• Mentation
 o Cerebral perfusion
• Urine output
 (>0.5ml/kg/hr)
• Capillary refill
• Skin perfusion/mottling
• Cold (or warm) extremities
• Generalized edema
 o Pulmonary edema
• Intra-abdominal pressure

Laboratory

• Lactate
• pH, pCO2 and HCO3
• SCVO2 or SVO2
Volume Challenge

- Reserved for hemodynamically unstable patients with three advantages
 1. Opportunity to quantitate response during infusion
 2. Prompt correction of fluid (preload) deficits
 3. Minimizing risk of volume overload

- Only ~50% of hemodynamically unstable patients are fluid responsive after initial resuscitation
 - Aggressive and overzealous fluid administration can lead to severe tissue edema and compromised organ function

Vincent JL. Crit Care Med 2006; 34:1333-1337
Marik PE. Crit Care Med 2013; 41:1774-1781
Question

Which of the following is best to utilize for quantifying a response to a volume challenge?

1. Central venous pressure (CVP)
2. Mean arterial pressure (MAP)
3. Pulmonary capillary wedge pressure (PCWP)
4. Pulse pressure variation (PPV)
5. Urine output
Stroke Volume

• Dependent on preload and contractility in shock
Volume responsiveness - Static

CVP = RAP = RVEDP = RVEDV = RV Preload ≈ PCWP = LVEDP = LVEDV = LV Preload

<table>
<thead>
<tr>
<th>Measure*</th>
<th>Premise</th>
<th>Limitations</th>
<th>Takeaway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central venous pressure (CVP)</td>
<td>CVP surrogate for PCWP & PCWP = LVEDP (and thus stroke volume)</td>
<td>CVP or ΔCVP does not correlate with intravascular volume or stroke index/cardiac output</td>
<td>DO NOT USE</td>
</tr>
<tr>
<td>Pulmonary capillary wedge pressure (PCWP)</td>
<td>PCWP = LVEDP</td>
<td>LVEDP can be altered independently of LVEDV; does not</td>
<td>DO NOT USE</td>
</tr>
</tbody>
</table>

*Other measures: left ventricular end diastolic area (LVEDA), right ventricular end diastolic volume (RVEDV) similar concerns

Marik PE. Chest 2008; 134:172-178
Marik PE. Crit Care Med 2013; 41:1774-1781
CVP & PCWP and Cardiac Output

Figure 2. Individual values (open circles) and mean ± SD (closed circles) of central venous pressure (CVP) (both expressed in millimeters of mercury) in responders (R) and nonresponders (NR).

Figure 3. Individual values (open circles) and mean ± SD (closed circles) of pre-infusion pulmonary artery occlusion pressure (PAOP) (both expressed in millimeters of mercury) in responders (R) and nonresponders (NR).
Dynamic Measurements of Fluid Responsiveness

• Dynamic measures are used to exploit the existing relationship between heart and lungs during mechanical ventilation.

• To evaluate a patient’s location on the Frank-Starling curve, the following dynamic measures can be used:
 - Stroke Volume Variation (SVV)
 - Pulse Pressure Variation (PPV)
 - IVC Diameter Variation (ΔD_{IVC})
Effects of Mechanical Ventilation on Intrathoracic Structures

Compliant Heart (Fluid Responsive)

Non-Compliant Heart (Not Fluid Responsive)
Stroke Volume Variation (SVV)

Procedure:
- Arterial line is placed, and the change in area under the arterial wave form during respiratory variation is compared

ΔSVV 12-13% correlated with an increase of CO ≥ 15% after volume expansion, was highly predictive of fluid responsiveness

<table>
<thead>
<tr>
<th></th>
<th>SVV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.82</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Pulse Pressure Variation (PPV)

• Procedure:
 - Arterial line is placed, calculated difference (%) of pulse pressure between inspiration and expiration

• $\Delta PPV_{12-13\%}$ correlated with an increase of $CO \geq 15\%$ after volume expansion, was highly predictive of fluid responsiveness

<table>
<thead>
<tr>
<th>PPV</th>
<th>Sensitivity</th>
<th>0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specificity</td>
<td>0.88</td>
</tr>
</tbody>
</table>

IVC Variation

• Non-invasive measure to assess for fluid responsiveness in *mechanically ventilated* patients

• Procedure:
 o 2D Echocardiography is used, IVC visualized in subxiphoidal view, measurements made in M-Mode during respiratory cycle at ~3cm from right atrium
 o Difference calculated as ΔD_{IVC} as a percentage

• ΔD_{IVC} 12-18% with subsequent increase of CO \geq 15% after volume expansion, correlated with fluid responsiveness3,4
 o Positive Predictive Value: 93%
 o Negative Predictive Value: 92%

Identification of Structures and Mediums on Ultrasound

• **White**: Hyperechoic, often dense/calcified tissue; pericardium, diaphragm

• **Black**: Anechoic; **fluid**: blood, pleural fluid

• **Light/Dark Gray**: Hypoechoic, isoechoic; organs or structures, soft tissue, may indicate sluggish blood flow, thrombus

• **Air**: White/gray, STRONG reflector of sound waves, impedes visibility, often a limitation during bedside evaluation
Identification of Structures and Mediums on Ultrasound

Transducer placed on left chest, along midaxillary line
Identification of Structures and Mediums on Ultrasound

Parasternal Long Axis

RA
LV
LA
Aorta
Identification of Structures and Mediums on Ultrasound

Transducer placed subxiphoid view
IVC Variation

ΔD_{IVC}

ΔD_{IVC}
Inferior Vena Cava Variation to Assess for Fluid Responsiveness

Is this patient likely to be fluid responsive?

$$\Delta D_{IVC} (%) = \left(\frac{IVCD_b - IVCD_a}{IVCD_b} \right) \times 100$$

$$\Delta D_{IVC} (%) = \left(\frac{2.30 - 2.22}{2.22} \right) \times 100 = 3.6\%$$
Limitations of PP, SV and IVC Variation

Limitations:

- Patient must be mechanically ventilated with a V_t of at least 8ml/kg of IBW
- No arrhythmias present
- Passive ventilation
- No increase in IAP or open chest
- Requires arterial line placement (PPV and SVV)
- Required Hemodynamic Monitoring Device (SVV)
- Experience of ultrasonographer (IVC Variation)
Passive Leg Raise

- Non-invasive measure to assess for fluid responsiveness in *spontaneously breathing* patients
- PLR to 30° simulates ~300cc fluid bolus to the patient that is easily reversible

Procedure:
- Patient is placed in a supine position, passive leg raise of 30°, returned to supine position, administered 500cc NS
- HR, BP and aortic flow velocity measured at each interval
Passive Leg Raise

- Aortic Flow Velocity (marker of SV) measured with bedside echocardiography, an increase of CO and SV >12% was noted to be significant and correlated with fluid responsiveness\(^2\)

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>63%</td>
<td>89%</td>
</tr>
<tr>
<td>SV</td>
<td>69%</td>
<td>89%</td>
</tr>
</tbody>
</table>

- Limitations:
 - Good echocardiographic widows required for evaluation of SV and CO
 - Advanced echocardiographic skills
 - Technically difficult in many ICU patients

Summary of Static and Dynamic Measures

<table>
<thead>
<tr>
<th>Method</th>
<th>Technology</th>
<th>Sensitivity, Specificity, AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse pressure variation (PPV)</td>
<td>Arterial waveform</td>
<td>Sensitivity 89% Specificity 88%</td>
</tr>
<tr>
<td>Stroke volume variation (SVV)</td>
<td>Pulse contour analysis</td>
<td>Sensitivity 82% Specificity 86%</td>
</tr>
<tr>
<td>IVC Variation (ΔD_{IVC})</td>
<td>Echocardiography</td>
<td>Sensitivity 93% Specificity 92%</td>
</tr>
<tr>
<td>Passive Leg Raise</td>
<td>Echocardiography</td>
<td>Sensitivity 63% Specificity 89%</td>
</tr>
<tr>
<td>Central venous pressure (CVP)</td>
<td>Central venous catheter</td>
<td>AUC: 0.55 (0.48-0.62)</td>
</tr>
</tbody>
</table>
1 Case Study
Case Study One

• 44 y/o F presents with SOB and 10/10 extremity pain with subsequent difficulty ambulating, and decreased urine output

• PMHx:
 o IVDA, currently on Suboxone
 o Anxiety
 o Fungemia ~6 months ago s/p full treatment course
 o H/o Empyema requiring thoracentesis
Case Study One

• Vitals on admission:
 o HR: 154, Sinus Tachycardia
 o BP: 96/79, on 10mcg of Levophed infusion
 o Temperature: 36.6°
 o RR: 35-47
 o Spo2: 97% on 50% Venti-Mask

Initial Labs:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>101</td>
</tr>
<tr>
<td>3.3</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>12.5</td>
</tr>
<tr>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

VBG: 7.25/38/74/17
Lactate: 2.9
U/a w/ Micro: 1+ leuk esterase, +26-100 leukocytes, +26-100 erythrocytes, few bacteria
Case Study One

- Given additional 2L NS
- Patient was intubated for respiratory failure
- Started on Vanco, Zosyn, and Micafungin

• Repeat Labs:

ABG: 7.19/38/65/14
Lactate: 4.3
Case Study One

- Chest portable on admission:

- Chest portable post-intubation:
Case Study One

- Bedside US:
 - Parasternal Short Axis
 - Parasternal Long Axis

- Parasternal Long Axis
Case Study One

- Bedside US:

\[\Delta D_{IVC}(\%) = 640\% \]

Is the patient likely to be fluid responsive?
Case Study One: Diagnosis

- Patient was treated for severe septic shock, additional 4L IVF given
- Vasopressin added to Levophed gtt
- Patient grew +2/2 Blood cultures for Gram Positive Cocci in clusters within 8 hours of admission
Crystalloid vs colloid

<table>
<thead>
<tr>
<th>Trial</th>
<th>Design</th>
<th>Population</th>
<th>Interventions</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFE</td>
<td>Multicenter, randomized, double-blind</td>
<td>Medical, surgical intravascular volume ICU resuscitation</td>
<td>4% albumin (n=3497) 0.9% sodium chloride (n=3500)</td>
<td>RR death at 28 days 0.99 (95%CI; 0.91-1.09); Trends in sepsis and trauma for and against albumin</td>
<td>No mortality difference in heterogeneous population</td>
</tr>
<tr>
<td>CHEST</td>
<td>Multicenter, randomized, blinded, parallel-group</td>
<td>Medical and surgical patients w/ hypovolemia in ICU</td>
<td>HES 130/0.4 (n=3358) vs 0.9% NaCl (n=3384)</td>
<td>RR mortality at 90 days 1.06 (95%CI; 0.96-1.18).</td>
<td>No mortality difference, but increased AKI and RRT in HES</td>
</tr>
<tr>
<td>6S</td>
<td>Multicenter, randomized, blinded, parallel-group</td>
<td>Medical and surgical patients with severe sepsis in ICU</td>
<td>HES 130/0.4 (n=398) vs Ringer’s acetate (n=400)</td>
<td>RR 90-day mortality 1.17 (95% CI; 1.01-1.36) favoring Ringer’s</td>
<td>Increased mortality and RRT with HES</td>
</tr>
<tr>
<td>CRISTAL</td>
<td>Multicenter, randomized, open-label</td>
<td>Sepsis, trauma, hypovolemic shock in ICU</td>
<td>Colloids (n=1414); Crystalloids (n=1443)</td>
<td>No difference (25.4 vs 27%) in 28-day mortality. Decreased 90-day mortality</td>
<td>No difference in mortality for hypovolemia in ICU patients</td>
</tr>
<tr>
<td>ALBIOS</td>
<td>Multicenter, randomized, open-label</td>
<td>Severe sepsis medical/surgical ICU</td>
<td>20% albumin & crystalloid (n=903) vs crystalloid alone (n=907)</td>
<td>RR death at 28 days 1.0 (95% CI; 0.87-1.14); no difference at 90 days</td>
<td>No mortality benefit</td>
</tr>
</tbody>
</table>
Crystalloid vs colloid

• No evidence from randomized trials that resuscitation with colloids reduces mortality compared with crystalloids
 o HES solutions may increase mortality and AKI

• Avoid albumin and hypotonic solutions in TBI
 o Potential increased mortality due to increased intracranial pressure

Cochrane Database Syst Rev. 2013: 28;2 CD00D567
NEJM 2004; 350:2247-56
Question

In microcirculatory models, interstitial edema (‘third-spacing’) is influenced mainly by:

1. Low capillary oncotic pressure (π_P)
2. High capillary hydrostatic pressure (P_C)
3. High interstitial oncotic pressure (π_I)
4. High interstitial hydrostatic pressure (P_I)
Starling Forces

Net filtration pressure = \((P_c - P_l) - (\pi_P - \pi_l) \)
Endothelial Glycocalyx

- Acellular layer lining the intravascular endothelium
 - Web of membrane-bound glycoproteins and proteoglycans
 - Hydrophilic and anionic

- Colloid oncotic pressure across the EGL opposes, but does not reverse, filtration rate by transfusion colloids

Woodcock Brit J Anaesth 2012; 108 (3); 384-94.
Endothelial Damage

Normal Vasculature

- Vascular Endothelium
- Glycocalyx
- Capillary lumen π_c
- Interstitium π_i
- Lymphatic Flow J_t

Damaged Vasculature

- Vascular Endothelium
- Glycocalyx
- Capillary lumen π_c
- Interstitium π_i
- Lymphatic Flow J_t

- less glycocalyx
- less tight junctions
- more edema formation
Glycocalyx Implications

1. Glycocalyx ‘traps’ plasma water in hydrophilic composition
 o Crystalloid : colloid is ~1.3:1
 o Colloid administration likely ‘dehydrates’ glycocalyx increases plasma volume (transiently)

2. Fluid extravasation predominately dependent on capillary hydrostatic pressures
 o Minimize rapid increases in P_C
 • Small boluses
 • Alpha agonists – constricts pre-capillary arterioles attenuating P_C

3. Hypoalbuminemia correction is of no clinical benefit
 o Indicator of disease severity

4. Hyperoncotic albumin solution doesn’t improve pulmonary edema
Crystalloids

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>0.9% NaCl</th>
<th>Lactated Ringer's</th>
<th>Plasma-Lyte & Normosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (mmol/L)</td>
<td>140</td>
<td>154</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>Chloride (mmol/L)</td>
<td>102</td>
<td>154</td>
<td>109</td>
<td>98</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>5</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium (mmol/L)</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Buffer (mmol/L)</td>
<td>Bicarbonate (24)</td>
<td>-</td>
<td>Lactate (28)</td>
<td>Acetate (27) Gluconate (23)</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>5.7</td>
<td>6.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Osmolality (mOsm/L)</td>
<td>290</td>
<td>308</td>
<td>273</td>
<td>295</td>
</tr>
</tbody>
</table>
Hyperchloremia

1. High chloride concentration filtered across glomerulus
2. Increased chloride concentration in tubule
3. Macula densa senses increased chloride concentration
4. Macula densa releases local mediators stimulating afferent arteriole
5. Afferent arteriole constricts

Decreased hydrostatic pressure and GFR
0.9% NaCl vs Chloride restrictive

<table>
<thead>
<tr>
<th>Trial</th>
<th>Design</th>
<th>Population</th>
<th>Interventions</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunos 2012</td>
<td>Single center, prospective, open-label, before-and-after</td>
<td>22-bed mixed med-surg ICU</td>
<td>Chloride-liberal vs chloride-restrictive in 6 months periods 2008 and 2009, respectively</td>
<td>Restrictive associated with less RIFLE-defined AKI and RRT and lower serum creatinine rise</td>
<td>Restricting IV chloride decreases incidence of AKI and RRT</td>
</tr>
<tr>
<td>SPLIT 2015</td>
<td>Double-blind, cluster randomized, double cross-over</td>
<td>4 New Zealand ICUs (3 mixed med-surg, 1 cardiothoracic and vascular)</td>
<td>Alternating 7-week blocks of Plasma-Lyte or 0.9% saline with two crossovers</td>
<td>AKI at 90 days was 9.6% PL and 9.2% NS with a RR 1.04 [95% CI 0.80-1.36]. No difference in RRT</td>
<td>Buffered crystalloid did not reduce the risk of AKI compared to saline</td>
</tr>
<tr>
<td>PLUS Recruiting</td>
<td>Multicenter, blinded, randomized</td>
<td>ICU patients requiring fluid resuscitation</td>
<td>Plasma-Lyte vs 0.9% NaCl</td>
<td>Expected completion 2021</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Case Study
Case Study Two

• 67 y/o F presents s/p PEA arrest for 10 minutes, presumed septic shock secondary to unknown source. Patient ventilated and sedated upon admission, on Levophed gtt at 15mcg/hr.
 • Family denies prodrome of fevers/chills/n/v/d, or CP, but reported +general malaise and increased SOB x3 days.

• PMHx:
 o Hyperlipidemia
 o DM
 o HTN
 o CAD
Case Study Two

• Vitals on admission:
 - HR: 72, NSR
 - BP: 101/54 on Levophed gtt at 15mcg/hr
 - Temperature: 37.5°
 - RR: 22
 - Ventilated, Spo2 96% on Fio2 of 80%, PEEP of 8

Initial Labs:

Troponin: 1.31
CK-MB: 8
Mg: 1.2
AST/ALT: 101/132
Calcium: 8.2

U/a w/ Micro: -6-25, -Nitrites, -Bacteria, +Small protein
U/o: 20cc since admission

VBG: 7.25/34/61/16
Lactate: 2.4
Case Study Two

- Patient given 2L IVF in the Emergency Department
- Started on Vanco and Zosyn for severe septic shock

Chest portable on admission:

ECG on admission: ST depressions in II, III and aVF with TWI in V₅ and V₆

Repeat labs:
Troponin(8hr): 16.31
CK-MB: 25
Case Study Two

- Bedside US continued:
Case Study Two

- Bedside US was completed:

![Subcostal view diagram]
Case Study Two

- Bedside US:

$$\Delta IVC_D(\%) = 6.8\%$$

Is the patient likely to be fluid responsive?
Case Study Two: Diagnosis

- Patient diagnosed with cardiogenic shock secondary to acute myocardial infarction
- Additional IVF administration was stopped
- Vasopressin was added for to Levophed infusion
“Fluid Safety”

• Earlier initiation of vasopressors may be warranted

• Volume overload compromises organ blood flow

• Most clinicians would likely support conservative therapy once ‘adequate resuscitation’ achieved

• Interestingly, recent trials SSSP-2 and FEAST suggest bolus fluid is harmful
 o Both in sub-Saharan Africa, one in children
What is practiced?

- FENICE Study
- Half of patients with negative response to fluid challenge received further fluid
- Clinicians relied heavily on hypotension and BP response
- Half of patients had no hemodynamic value to measure response
 - CVP used most often
- Authors conclude “current practice and evaluation of fluid challenge in critically ill patients seems to be arbitrary”

Case Study
Case Study Three

• 58 y/o M presents with chief complaint of SOB x 3 weeks, progressively worsening in the past 3 days
 - ROS: +cough with white sputum production, +chest pressure, +intermittent chills, +dyspnea on exertion.

• PMHx:
 - HTN
 - Raynaud’s Disease
 - Tobacco use; quit 30 years ago
Case Study Three

- Vitals on admission:
 - HR: 107, NSR
 - BP: 121/74
 - Temperature: 36.3°
 - RR: 19-26
 - Spo2: 80% on Room air

Initial Labs:
- Mg: 2.2
- AST/ALT: 23/17
- Albumin: 3.9
- Calcium: 9.7
- Troponin: 0.02
- BNP: 69

ABG: 7.47/24/62/21
Lactate: 2.4
Case Study Three

- Given 3L NS, placed on 4L NC, Spo2 improved to 96%
- Started on Ceftriaxone and Azithromycin for CAP
- Developed worsening SOB overnight

Chest portable on admission

Chest portable 8 hours later
Case Study Three

- Bedside US was completed: Parasternal Long Axis
Case Study Three

- Bedside US was completed:

- Parasternal Short Axis

Subcostal view
Case Study Three

- Official Echo was completed which revealed large pericardial effusion with + early diastolic collapse of RV and dilated IVC
Case Study Three: Diagnosis

• Cardiac Tamponade
 o Pericardial Window; 750cc of serosanguineous fluid was removed
 o Pericardial fluid revealed malignant cells

*Remember, a patient in tamponade is *preload dependent*, but when using IVC variation to assess for volume status, would show a dilated IVC with little variation due to obstructive shock.
Summary

• Goal of shock is to restore effective tissue perfusion beginning with fluid challenge
 o Assessing response is crucial
 • Dynamic >> static

• Ultrasonography is an excellent modality for undifferentiated shock as it can provide data regarding type of shock, need for therapeutic intervention and response to resuscitation

• Crystalloids are reasonable first-line agents for fluid resuscitation in most patients