Management of Hospital-acquired and Ventilator-associated Pneumonia

Amanda Cantin, PharmD, BCCCP
Assistant Professor
Touro College of Pharmacy
Disclosures

- I have no financial disclosures related to this presentation.
Objectives

- Define hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP)
- Describe diagnosis of HAP and VAP
- Identify risk factors for infections with multi-drug resistant organisms (MDROs)
- Differentiate empiric therapy recommendations for HAP and VAP
- Discuss the role of short-course therapy, antibiotic de-escalation and use of local antibiograms in the treatment of HAP and VAP
Epidemiology of HAP and VAP

- 22% of all hospital-acquired infections (HAIs)
- Mortality rates:
 - VAP range from 20 – 50%
- Economic burden:
 - Prolonged mechanical ventilation
 - Prolonged hospital length of stay (LOS)
 - Excess cost $40,000 per patient
What’s Different

- Utilization of the GRADE methodology for evaluation of evidence
 - Strong versus weak recommendation
 - Quality of evidence
- Removal of Health-care Associated Pneumonia (HCAP)
- Emphasis on use of antibiograms
 - Hospital specific
 - Regional

- Use of antibiograms
 - *Recommend* use of antibiogram directed empiric therapy
 - *Recommend* all hospitals generate/disseminate local antibiogram(s)
 - Specific for:
 - ICU population
 - VAP population
 - HAP population

- Updates to local antibiogram based on:
 - Rate of change in resistance patterns
 - Resources
 - Data available for analysis

[CID. 2016; 63: 1-51.]

- Biomarkers to Diagnose HAP/VAP
 - *Recommend* using clinical criteria alone over:
 - Procalcitonin (PCT)
 - Soluble Triggering Receptor Expressed on Myeloid Cells (sTREM-1)
 - *Strong recommendation; moderate quality evidence*
 - *Suggest* using clinical criteria alone over:
 - C-reactive Protein (CRP)
 - Modified Clinical Pulmonary Infection Score (CPIS)
 - *Weak recommendation; low-quality evidence*
Differentiating HAP and VAP

Nosocomial Pneumonia

Hospital-Acquired

Ventilator-Associated
Definition of HAP

• Unchanged from 2005 guidelines
• Development of symptoms \geq 48 hours after hospital admission
 – Radiographic infiltrate
 – Clinical criteria:
 • Fever
 • Leukocytosis
 • Purulent sputum
 • Decline in oxygenation

Time zero = Admission

\geq 48 hours after admission
Symptom Development

Hospital-acquired Pneumonia

Diagnosis of HAP

- Microbiologic cultures
 - Sputum and blood

- Non-invasive sampling preferred:
 - Spontaneous expectoration
 - Sputum induction
 - Nasotracheal suctioning
 - Endotracheal aspiration

- Weak recommendation, very low-quality evidence
Etiology of HAP

Bacteria

Gram (+)
- S. aureus

Gram (-)
- Gram (-) bacilli
- P. aeruginosa
Etiology of HAP and Impact of Appropriate Therapy

<table>
<thead>
<tr>
<th>Organism</th>
<th>Definitive</th>
<th>Possible</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td>14</td>
<td>2</td>
<td>16 (9.7)</td>
</tr>
<tr>
<td>L. pneumophilia</td>
<td>7</td>
<td></td>
<td>7 (4.2)</td>
</tr>
<tr>
<td>Enterobacteria</td>
<td>4</td>
<td>4</td>
<td>8 (4.8)</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>3</td>
<td>4</td>
<td>7 (4.2)</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>2</td>
<td>5</td>
<td>7 (4.2)</td>
</tr>
<tr>
<td>Acinetobacter</td>
<td>5</td>
<td></td>
<td>5 (4.2)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1</td>
<td>3</td>
<td>4 (3)</td>
</tr>
<tr>
<td>H. influenza</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Unknown</td>
<td>105</td>
<td></td>
<td>105 (63.6)</td>
</tr>
<tr>
<td>Total (n=165)</td>
<td>31 (18.8)</td>
<td>29 (17.6)</td>
<td>60 (36.4)</td>
</tr>
</tbody>
</table>
Etiology of HAP and Impact of Appropriate Therapy

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Appropriate Antibiotics N=152</th>
<th>Inappropriate Antibiotics N=8</th>
<th>P-value, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Mortality</td>
<td>34 (22.4%)</td>
<td>6 (75%)</td>
<td>p=0.003, 2.01-53.95</td>
</tr>
<tr>
<td>Attributable Mortality</td>
<td>23 (15.1%)</td>
<td>4 (50%)</td>
<td>p=0.02, 1.31-18.49</td>
</tr>
</tbody>
</table>
Etiology of HAP

Antibiotic Resistance of *Staphylococcus aureus* in United States

Center for Disease Dynamics, Economics & Policy (cddep.org)
Etiology of HAP

Antibiotic Resistance of *Klebsiella pneumoniae* in United States

% Resistant (invasive isolates)

- Aminoglycosides
- Amoxicillin–clavulanate
- Carbapenems
- Cephalosporins (3rd gen)
- Fluoroquinolones
- Piperacillin–tazobactam

Center for Disease Dynamics, Economics & Policy (cddep.org)
Etiology of HAP

Antibiotic Resistance of *Pseudomonas aeruginosa* in United States

Center for Disease Dynamics, Economics & Policy (cddep.org)
Risk Factors for MDROs in HAP

2005 HAP/VAP Guidelines

1. Antimicrobial therapy in preceding 90 days
2. Current hospitalization ≥ 5 days
3. High frequency antibiotic resistance in the community of specific hospital unit
4. Presence or RF for HCAP
 - Hospitalization ≥ 2 days in last 90 days
 - Residence in NH or LTC
 - Home infusion therapy
 - Chronic dialysis within 30 days
 - Family member with MDRO
5. Immunosuppressive disease or therapy

2016 HAP Guidelines

MDR HAP
- Prior use of IV antibiotics within 90 days

MRSA
- Prior use of IV antibiotics within 90 days

Pseudomonas
- Prior use of IV antibiotics within 90 days

Empiric Therapy HAP

• All regimens should include coverage for:
 – *S. aureus*
 • *Strong recommendation, low-quality evidence*
 – Gram negative bacilli
 – *P. aeruginosa*
 • *Strong recommendation, very low-quality evidence*
Empiric Gram (+) Coverage HAP

• Methicillin-susceptible *S. aureus* (*MSSA*)
 – No RF for antimicrobial resistance
 – Not at high-risk for mortality
 • Septic shock
 • Need for mechanical ventilation

• Drug(s) of choice:
 – Piperacillin-tazobactam
 – Cefepime
 – Levofloxacin
 – Imipenem
 – Meropenem
 – *Weak recommendation, very low-quality evidence*
Empiric Gram (+) Coverage HAP

• Methicillin-resistant *S. aureus* (*MRSA*)
 – RF for antimicrobial resistance
 – Treated in ICU where MRSA rates >20%
 – Units where MRSA rates unknown
 – High risk for mortality

• Drug(s) of choice:
 – Vancomycin
 – Linezolid

• *Weak recommendation, very low-quality evidence*
MRSA Treatment: Vancomycin or Linezolid?

• 2011 Meta-analysis
• Inclusion:
 – Randomized-controlled trials
 – Compared linezolid to a glycopeptide antibiotic
 – Pneumonia
 – Hospitalized patients
• Primary outcome:
 – Clinical success at test-of-cure (TOC)
Test-of-Cure Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Linezolid</th>
<th>Glycopeptide</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubenstein, 2001</td>
<td>71/107</td>
<td>62/91</td>
<td>0.97 (0.80, 1.18)</td>
</tr>
<tr>
<td>Stevens, 2002</td>
<td>20/39</td>
<td>16/32</td>
<td>1.03 (0.65, 1.63)</td>
</tr>
<tr>
<td>Wunderink, 2003</td>
<td>114/168</td>
<td>111/171</td>
<td>1.05 (0.90, 1.22)</td>
</tr>
<tr>
<td>Cepeda, 2004</td>
<td>23/43</td>
<td>30/55</td>
<td>0.98 (0.68, 1.42)</td>
</tr>
<tr>
<td>Wilcox, 2004</td>
<td>51/53</td>
<td>52/56</td>
<td>1.04 (0.95, 1.13)</td>
</tr>
<tr>
<td>Kohno, 2007</td>
<td>11/34</td>
<td>6/19</td>
<td>1.02 (0.45, 2.33)</td>
</tr>
<tr>
<td>Wunderink, 2008</td>
<td>13/23</td>
<td>9/19</td>
<td>1.19 (0.66, 2.16)</td>
</tr>
<tr>
<td>Lin, 2008</td>
<td>19/26</td>
<td>18/33</td>
<td>1.34 (0.91, 1.98)</td>
</tr>
<tr>
<td>Total</td>
<td>322/493</td>
<td>304/476</td>
<td>1.04 (0.97, 1.11)</td>
</tr>
</tbody>
</table>

#success/total

![Graph showing comparison between Linezolid and Glycopeptide]
Empiric Gram (-) Coverage HAP

- Coverage of gram (-) bacilli
- Use of 1 anti-pseudomonal agent
 - No RF for antimicrobial resistance
 - Not at high-risk for mortality
- *Weak recommendation, low-quality evidence*
Empiric Gram (-) Coverage HAP

- Coverage of gram (-) bacilli
- Use of 2 anti-pseudomonal agents
 - RF for antimicrobial resistance
 - High risk for mortality
- *Weak recommendation, very low-quality evidence*
Other Recommendations for Empiric Therapy

• Avoid use of aminoglycosides
 – *Weak recommendation, low-quality evidence*

• Consider use of 2 anti-pseudomonal drugs:
 – Structural lung disease
Designing an Empiric HAP Regimen

<table>
<thead>
<tr>
<th>No MRSA RF and NOT High-Risk Mortality</th>
<th>MRSA RF and NOT High-Risk Mortality</th>
<th>MDR RF and/or High-Risk Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam OR</td>
<td>Piperacillin-tazobactam OR</td>
<td>Piperacillin-tazobactam OR</td>
</tr>
<tr>
<td>Cefepime OR</td>
<td>Cefepime OR</td>
<td>Cefepime OR</td>
</tr>
<tr>
<td>Levofloxacin OR</td>
<td>Levofloxacin OR</td>
<td>Levofloxacin OR</td>
</tr>
<tr>
<td>Imipenem OR Meropenem</td>
<td>Imipenem OR Meropenem OR</td>
<td>Imipenem OR Meropenem OR</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>Amikacin OR Gentamicin OR</td>
<td>Aztreonam</td>
</tr>
<tr>
<td>PLUS</td>
<td>PLUS</td>
<td>PLUS</td>
</tr>
<tr>
<td>Vancomycin OR</td>
<td>Vancomycin OR</td>
<td>Vancomycin OR</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Linezolid</td>
<td></td>
</tr>
</tbody>
</table>
JZ is a 73 year old African American male admitted 4/24/17 with acute ischemic stroke.

- **PMH:** HTN, HLD, DM

- **Current Medications:**
 - Aspirin 81 mg PO daily
 - Atorvastatin 80 mg PO daily
 - Metformin 1000 mg PO daily
 - Amlodipine 10 mg PO daily
 - Lisinopril 20 mg PO daily
Case #1

Today (4/27) JZ is coughing up purulent sputum, has decreasing O_2Sat and altered mental status. The primary team decides to intubated JZ.

- **Vital Signs:**
 HR 101; RR 22; BP 104/69mmHg; Temp 100.6°F; O_2Sat 89% on 2L

- **Anthropometrics:**
 75 kg; 170 cm

- **Labs:**

 | 134 | 100 | 24/113 | 14.7 \ 10.4/213 | 3.7 | 22 | 1.1 | 31.6 |

- **Chest X-Ray:**
 Endotracheal tube present, terminating 3 cm above the carina. Left lower lobe infiltrate suggestive of pneumonia vs atelectasis.
What type of pneumonia does JZ have?

A. Ventilator-associated pneumonia
B. Healthcare-associated pneumonia
C. Aspiration pneumonia
D. Hospital-acquired pneumonia
The medical team asks for your recommendation on empiric antibiotic therapy for JZ. MRSA resistance rates are unknown in this institution. Which of the following is an appropriate empiric regimen for JZ?

A. Vancomycin and piperacillin-tazobactam
B. Meropenem and levofloxacin
C. Vancomycin, cefepime and levofloxacin
D. Linezolid and amikacin
Definition of VAP

• Unchanged from 2005 guidelines
• Development of symptoms > 48 hours after *endotracheal intubation*
 – Radiographic infiltrate
 – Clinical criteria:
 • Fever
 • Leukocytosis
 • Purulent sputum
 • Decline in oxygenation

Ventilator-associated Pneumonia

Admission

Time zero = Intubation and Mechanical Ventilation

> 48 hours after intubation
Symptom Development

Diagnosis of VAP

• Microbiologic cultures recommended
 – Sputum
 – Blood

• Sampling via the non-invasive route preferred
 – Invasive route
 • Bronchoscopy
 • Blind bronchial sampling
 – Non-invasive route
 • Endotracheal aspiration (ETA)

• Weak recommendation, low quality evidence
Microbiologic Diagnosis of VAP

• Semi-quantitative results preferred
 – Quantitative
 – Semi-quantitative

• *Weak recommendation, low quality evidence*
Etiology of VAP

Bacteria

Gram (+)
- *S. aureus*

Gram (-)
- Gram (-) bacilli
 - *P. aeruginosa*
 - *Acinetobacter*
Etiology of VAP

Antibiotic Resistance of *Acinetobacter baumannii* in United States

- Amikacin
- Aminoglycosides
- Ampicillin-sulbactam
- Carbapenems
- Ceftazidime
- Polymyxins

Center for Disease Dynamics, Economics & Policy (cddep.org)
Risk Factors for MDROs in VAP

<table>
<thead>
<tr>
<th>2005 HAP/VAP Guidelines</th>
<th>2016 VAP Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Antimicrobial therapy in preceding 90 days</td>
<td>MDR VAP</td>
</tr>
<tr>
<td>• Current hospitalization ≥ 5 days</td>
<td>• Prior use of IV antibiotics within 90 days</td>
</tr>
<tr>
<td>• High frequency antibiotic resistance in the community of specific hospital unit</td>
<td>• Septic shock at time of VAP</td>
</tr>
<tr>
<td>• Presence or RF for HCAP</td>
<td></td>
</tr>
<tr>
<td>• Hospitalization ≥ 2 days in last 90 days</td>
<td>• ARDS preceding VAP</td>
</tr>
<tr>
<td>• Residence in NH or LTC</td>
<td>• ≥ 5 days of hospitalization prior to VAP</td>
</tr>
<tr>
<td>• Home infusion therapy</td>
<td>• Acute RRT prior to VAP</td>
</tr>
<tr>
<td>• Chronic dialysis within 30 days</td>
<td>MRSA</td>
</tr>
<tr>
<td>• Family member with MDRO</td>
<td>• Prior use of IV antibiotics within 90 days</td>
</tr>
<tr>
<td>• Immunosuppressive disease or therapy</td>
<td>Pseudomonas</td>
</tr>
<tr>
<td></td>
<td>• Prior use of IV antibiotics within 90 days</td>
</tr>
</tbody>
</table>
Empiric Therapy VAP

• All regimens should include coverage for:
 – *S. aureus*
 – *P. aeruginosa*
 – Gram negative bacilli

• *Strong recommendation, low-quality evidence*
Empiric Gram (+) Coverage VAP

• Methicillin-susceptible *S. aureus* (*MSSA*)
 – No RF for antimicrobial resistance
 – Treated in ICU where MRSA rates <10 – 20%

• Drug(s) of choice:
 – Piperacillin-tazobactam
 – Cefepime
 – Levofloxacin
 – Imipenem
 – Meropenem

• *Weak recommendation, very low-quality evidence*
Empiric Gram (+) Coverage VAP

• Methicillin-resistant *S. aureus* (MRSA)
 – RF for antimicrobial resistance
 – Treated in ICU where MRSA rates >10 – 20%
 – Units where MRSA rates unknown

• Drug(s) of choice:
 – Vancomycin
 – Linezolid

• *Weak recommendation, very low-quality evidence*
Empiric Gram (-) Coverage VAP

• Coverage of gram (-) bacilli
• Use of 1 anti-pseudomonal agent
 – No RF for antimicrobial resistance
 – <10% of gram (-) isolates are resistant to an agent being considered for monotherapy
• Weak recommendation, low-quality evidence
Empiric Gram (-) Coverage VAP

• Coverage of gram (-) bacilli

• Use of 2 anti-pseudomononal agents from 2 different classes
 – RF for antimicrobial resistance
 – >10% of gram (-) isolates are resistant to an agent being considered for monotherapy
 – ICU where local antimicrobial susceptibility rates are unknown

• Weak recommendation, low-quality evidence
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Mortality RR (95% CI)</th>
<th>Clinical Response RR (95% CI)</th>
<th>Acquired Resistance RR (95% CI)</th>
<th>Adverse Events RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination vs monotherapy</td>
<td>1.11 (0.9, 1.38)</td>
<td>0.89 (0.75, 1.07)</td>
<td>1.13 (0.42, 3.00)</td>
<td>0.90 (0.69, 1.18)</td>
</tr>
<tr>
<td>Cephalosporin vs non-cephalosporin</td>
<td>0.97 (0.74, 1.27)</td>
<td>0.92 (0.78, 1.09)</td>
<td>2.36 (0.63, 8.86)</td>
<td>1.01 (0.82, 1.25)</td>
</tr>
<tr>
<td>Quinolone vs non-quinolone</td>
<td>1.13 (0.92, 1.39)</td>
<td>1.05 (0.91, 1.20)</td>
<td>0.77 (0.59, 1.01)</td>
<td>0.88 (0.78, 0.99)</td>
</tr>
<tr>
<td>Anti-Pseudomonal PCN vs non-anti-Pseudomonal PCN</td>
<td>1.12 (0.76, 1.66)</td>
<td>1.10 (0.80, 1.52)</td>
<td>Not Reported</td>
<td>0.96 (0.77, 1.20)</td>
</tr>
<tr>
<td>Aminoglycoside vs non-aminoglycoside</td>
<td>1.15 (0.88, 1.50)</td>
<td>0.82 (0.71, 0.95)</td>
<td>Not Reported</td>
<td>0.96 (0.70, 1.33)</td>
</tr>
<tr>
<td>Carbapenem vs non-carbapenem</td>
<td>0.78 (0.65, 0.94)</td>
<td>1.02 (0.93, 1.12)</td>
<td>1.16 (0.53, 2.55)</td>
<td>1.08 (0.90, 1.28)</td>
</tr>
</tbody>
</table>
Designing an Empiric VAP Regimen

<table>
<thead>
<tr>
<th>Gram (+) Antibiotics with MRSA Activity</th>
<th>MSSA, Gram (-) and Antipseudomonal Antibiotics</th>
<th>Gram (-) Antibiotics with Antipseudomonal activity: Non-β-Lactam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin OR</td>
<td>Piperacillin-tazobactam OR</td>
<td>Ciprofloxacin Levofloxacin OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>Cefepime</td>
<td>Amikacin Gentamicin Tobramycin OR</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imipenem Meropenem OR</td>
<td>Colistin Polymyxin B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aztreonam</td>
<td></td>
</tr>
</tbody>
</table>
Emerging Therapies

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Ceftolozane/Tazobactam</th>
<th>Ceftazidime/Avibactam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Name</td>
<td>Zerbaxa</td>
<td>Avycaz</td>
</tr>
<tr>
<td>FDA Indications</td>
<td>cIAI (with metronidazole)</td>
<td>cIAI (with metronidazole)</td>
</tr>
<tr>
<td></td>
<td>cUTI (incl. pyelonephritis)</td>
<td>cUTI (incl. pyelonephritis)</td>
</tr>
<tr>
<td>In vivo Gram-negative Activity</td>
<td>Enterobacter cloacae</td>
<td>Citrobacter freundii</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
<td>Citrobacter koseri</td>
</tr>
<tr>
<td></td>
<td>Klebsiella oxytoca</td>
<td>Enterobacter cloacae</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumonia</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Proteus mirabilis</td>
<td>Klebsiella oxytoca</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>Klebsiella pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteus mirabilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>In vivo Gram-positive Activity</td>
<td>Streptococcus anginosus</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Streptococcus constellatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus salivarius</td>
<td></td>
</tr>
<tr>
<td>In vivo Anaerobic Activity</td>
<td>Bacteroides fragilis</td>
<td>N/A</td>
</tr>
<tr>
<td>ESBL Activity</td>
<td>Class A, C, D</td>
<td>Class A, C, D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbapenemases (KPC)</td>
</tr>
</tbody>
</table>

Clinical Trials

• Ceftolozane/Tazobactam
 – Phase III Trial (ASPECT-NP) currently enrolling patients
 – Comparing ceftolozane/tazobactam to meropenem for VAP and HAP requiring ventilation

• Ceftazidime/Avibactam
 – Phase III Trial completed January 2016
 – Comparing ceftazidime/avibactam to meropenem in patients with nosocomial pneumonia

https://clinicaltrials.gov/ct2/show/NCT02070757
https://clinicaltrials.gov/ct2/show/NCT01808092
Case #2

EK is a 26 year old Caucasian male admitted to the trauma ICU on 4/23/17 with multiple fractures and bilateral pneumothoraces requiring chest tube placement s/p ATV accident. EK is currently mechanically ventilated.

• **PMH:** None

• **Current medications:**

 Enoxaparin 30 mg subcutaneously Q 12 hours
 Fentanyl Infusion IV 250 mcg/hr
 Propofol Infusion IV 22 mcg/kg/min
 Famotidine 20 mg via OGT Q 12 hours
Case #2

Today (4/27) EK has new onset of fever and a change in his chest x-ray.

• **Vital Signs:**
 HR 97; RR 18; BP 120/71mmHg; Temp 101.7°F; O₂Sat 94% on 40% FiO₂

• **Anthropometrics:**
 87 kg; 182 cm

• **Labs:**
 140 | 99 | 17 / 97
 3.7 | 21 | 0.8
 16.9 \ 12.4 / 178
 / 35.9 \

• **Chest X-Ray:**
 Endotracheal tube present, terminating 2 cm above the carina. New right lower lobe opacity compared to previous studies. Representing pneumonia vs atelectasis, correlate clinically.
Based on the EK’s patient specific factors and the hospital’s antibiogram below. Which of the following is an appropriate empiric regimen for EK?

A. Piperacillin-tazobactam plus levofloxacin
B. Linezolid plus cefepime
C. Meropenem
D. Vancomycin plus meropenem plus levofloxacin

<table>
<thead>
<tr>
<th>Organism</th>
<th>Oxacillin</th>
<th>Vancomycin</th>
<th>Piperacillin-tazobactam</th>
<th>Meropenem</th>
<th>Cefepime</th>
<th>Levofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>91</td>
<td>99</td>
<td>87</td>
<td>89</td>
<td>93</td>
<td>86</td>
</tr>
<tr>
<td>E. coli</td>
<td>--</td>
<td>--</td>
<td>85</td>
<td>90</td>
<td>93</td>
<td>79</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>--</td>
<td>--</td>
<td>78</td>
<td>84</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>--</td>
<td>--</td>
<td>96</td>
<td>91</td>
<td>84</td>
<td>83</td>
</tr>
</tbody>
</table>
De-escalation of Antibiotics

- De-escalation therapy
 - Changing empiric broad-spectrum therapy to narrower spectrum regimen
- Fixed therapy
 - Maintaining broad-spectrum therapy for the duration of treatment
- *Suggest* antibiotic therapy be de-escalated rather than fixed
 - *Weak recommendation, very low-quality evidence*
Optimal Antibiotic Duration

- VAP, a 7-day course of therapy recommended
 - No difference:
 - Mortality
 - Recurrent pneumonia
 - Treatment failure
 - Hospital LOS
 - Duration of mechanical ventilation
 - Includes non-glucose fermenting gram (-) bacilli
 - Strong recommendation; moderate quality evidence
8-Day vs 15-Day Course of Therapy

 - Prospective, randomized, double-blind, controlled study
- Inclusion criteria:
 - Mechanical ventilation for ≥ 48 hours
 - ≥ 18 years old
 - Clinical suspicion of VAP
 - Positive quantitative cultures from bronchoscopy
 - Initiation of appropriate antibiotics within 24 hours of bronchoscopy

8-Day vs 15-Day Course of Therapy

Primary outcomes:

<table>
<thead>
<tr>
<th>Event</th>
<th>8-Day Regimen (n=197)</th>
<th>15-Day Regimen (n=204)</th>
<th>Between-Group Risk Difference (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death from all causes</td>
<td>37/197 (18.8)</td>
<td>35/204 (17.2)</td>
<td>1.6 (-3.7 to 6.9)</td>
</tr>
<tr>
<td>Pulmonary infection recurrence</td>
<td>57/197 (28.9)</td>
<td>53/204 (26)</td>
<td>2.9 (-3.2 to 9.1)</td>
</tr>
<tr>
<td>• NF GNB</td>
<td>26/64 (40.6)</td>
<td>16/63 (25.4)</td>
<td>15.2 (3.9 to 26.6)</td>
</tr>
<tr>
<td>No. Antibiotic-free days</td>
<td>13.1 (7.4)</td>
<td>8.7 (5.2)</td>
<td>4.4 (3.1 to 5.6)</td>
</tr>
</tbody>
</table>

Short vs Long Course Therapy

- 2015 Cochrane Systematic Review

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Assumed Risk Long-Course</th>
<th>Corresponding Risk Short-Course (95% CI)</th>
<th>Relative Effect (95% CI)</th>
<th>No. of Participants (Studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/u: 28 days</td>
<td>175 per 1000</td>
<td>201 per 1000 (141 to 277)</td>
<td>OR 1.18 (0.77 to 1.8)</td>
<td>598 (3 studies)</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-GNB F/u: 28 days</td>
<td>265 per 1000</td>
<td>255 per 1000 (123 to 450)</td>
<td>OR 0.95 (0.39 to 2.27)</td>
<td>179 (2 studies)</td>
</tr>
</tbody>
</table>

Short vs Long Course Therapy

- **2015 Cochrane Systematic Review**

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Assumed Risk Long-Course</th>
<th>Corresponding Risk Short-Course (95% CI)</th>
<th>Relative Effect (95% CI)</th>
<th>No. of Participants (Studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence of PNA</td>
<td>180 per 1000</td>
<td>237 per 1000 (171 to 318)</td>
<td>OR 1.41 (0.94 to 2.12)</td>
<td>733 (19 studies)</td>
</tr>
<tr>
<td>Recurrence of PNA NF-GNB</td>
<td>247 per 1000</td>
<td>417 per 1000 (272 to 577)</td>
<td>OR 2.18 (1.14 to 4.16)</td>
<td>176 (2 studies)</td>
</tr>
<tr>
<td>28-Day Antibiotic-free Days</td>
<td>The mean 28-day antibiotic free days in the intervention group was 4.02 higher (2.26 to 5.78 higher)</td>
<td></td>
<td>431 (2 studies)</td>
<td></td>
</tr>
</tbody>
</table>

Optimal Antibiotic Duration

- HAP, a 7-day course of therapy recommended
 - No specific studies available for HAP
 - Data extrapolated from VAP
 - Increased 28-day antibiotic free days
 - Reduced recurrent VAP due to MDR pathogens
 - Strong recommendation; very-low quality evidence
Summary

- Definitions of HAP and VAP are unchanged from 2005 guidelines
- Diagnosis of HAP and VAP should be based on clinical criteria and non-invasive semi-quantitative cultures
- Risk factors for MDROs differ between HAP and VAP patients
- Empiric therapy should be based on patient risk factors and local antimicrobial resistance patterns
- Short-course therapy with de-escalation recommended