Management of Hospital-acquired and Ventilator-associated Pneumonia

Amanda Cantin, PharmD, BCCCP Assistant Professor Touro College of Pharmacy

Disclosures

I have no financial disclosures related to this presentation.

Objectives

- Define hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP)
- Describe diagnosis of HAP and VAP
- Identify risk factors for infections with multi-drug resistant organisms (MDROs)
- Differentiate empiric therapy recommendations for HAP and VAP
- Discuss the role of short-course therapy, antibiotic deescalation and use of local antibiograms in the treatment of HAP and VAP

Epidemiology of HAP and VAP

- 22% of all hospital-acquired infections (HAIs)
- Mortality rates:
 - VAP range from 20 50%
- Economic burden:
 - Prolonged mechanical ventilation
 - Prolonged hospital length of stay (LOS)
 - Excess cost \$40,000 per patient

Historical Perspective

1966: ATS- Nosocomial Infections		2005: ATS/ISDA- HAP and VAP Guidelines	2 / - - -	2 016: ATS/IDSA- IAP and VAP Guideline UP	DATE
	1996: ATS- HAP Consen Statement	ISUS	2014: S VAP Pre Guidelir	HEA/IDSA vention nes	
TOURO OF PHA	COLLEGE RMACY		Am J Respir Ci Am J Respir C Infect Control Ho	rit Care Med. 1996;15 Crit Care Med. 2005; Sp Epidemiol. 2014;39 CID. 2	3:1711–1725 171: 388-416 5(8): 915-936 016; 63: 1-51

Guideline Update: 2005 Versus 2016 What's Different

- Utilization of the GRADE methodology for evaluation of evidence
 - Strong versus weak recommendation
 - Quality of evidence
- Removal of Health-care Associated Pneumonia (HCAP)
- Emphasis on use of antibiograms
 - Hospital specific
 - Regional

Guideline Update: 2005 Versus 2016

- Use of antibiograms
 - Recommend use of antibiogram directed empiric therapy
 - Recommend all hospitals generate/disseminate local antibiogram(s)
 - Specific for:
 - ICU population
 - VAP population
 - HAP population

TOURO COLLEGE OF PHARMACY

Guideline Update: 2005 Versus 2016

- Updates to local antibiogram based on:
 - Rate of change in resistance patterns
 - Resources
 - Data available for analysis

Guideline Update: 2005 Versus 2016

- Biomarkers to Diagnose HAP/VAP
 - *Recommend* using clinical criteria alone over:
 - Procalcitonin (PCT)
 - Soluble Triggering Receptor Expressed on Myeloid Cells (sTREM-1)

Strong recommendation; moderate quality evidence

- Suggest using clinical criteria alone over:
 - C-reactive Protein (CRP)
 - Modified Clinical Pulmonary Infection Score (CPIS)
 - Weak recommendation; low-quality evidence

Differentiating HAP and VAP

Definition of HAP

- Unchanged from 2005 guidelines
- Development of symptoms ≥ 48 hours after hospital admission
 Time zero = Admiss
 - Radiographic infiltrate
 - Clinical criteria:
 - Fever

TOURO COLLEGE

OF PHARMACY

- Leukocytosis
- Purulent sputum
- Decline in oxygenation

Diagnosis of HAP

- Microbiologic cultures
 - Sputum and blood
- Non-invasive sampling preferred:
 - Spontaneous expectoration
 - Sputum induction
 - Nasotracheal suctioning
 - Endotracheal aspiration
 - Weak recommendation, very low-quality evidence

CID. 2016; 63: 1-51.

CID. 2016; 63: 1-51.

Etiology of HAP and Impact of Appropriate Therapy

Organism	Definitive	Possible	Total (%)
S. pneumoniae	14	2	16 (9.7)
L. pneumophilia	7		7 (4.2)
Enterobacteria	4	4	8 (4.8)
Aspergillus	3	4	7 (4.2)
P. aeruginosa	2	5	7 (4.2)
Acinetobacter		5	5 (4.2)
S. aureus	1	3	4 (3)
H. influenza		2	2
Other		3	3
Unknown			105 (63.6)
Total (n=165)	31 (18.8)	29 (17.6)	60 (36.4)
TOURO COLI OF PHARMAC	LEGE CY	СНЕ	<i>ST.</i> 2005; 127: 213-219.

Etiology of HAP and Impact of Appropriate Therapy

Outcome	Appropriate Antibiotics N=152	Inappropriate Antibiotics N=8	P-value, 95% CI
Crude Mortality	34 (22.4%)	6 (75%)	p=0.003 <i>,</i> 2.01-53.95
Attributable Mortality	23 (15.1%)	4 (50%)	p=0.02 <i>,</i> 1.31-18.49

CHEST. 2005; 127: 213-219.

OF PH

Antibiotic Resistance of *Klebsiella pneumoniae* in United States

Center for Disease Dynamics, Economics & Policy (cddep.org)

Center for Disease Dynamics, Economics & Policy (cddep.org)

Risk Factors for MDROs in HAP

2005 HAP/VAP Guidelines

- Antimicrobial therapy in preceding 90 days
- Current hospitalization \geq 5 days
- High frequency antibiotic resistance in the community of specific hospital unit
- Presence or RF for HCAP
 - Hospitalization ≥ 2 days in last 90 days
 - Residence in NH or LTC
 - Home infusion therapy
 - Chronic dialysis within 30 days
 - Family member with MDRO
- Immunosuppressive disease or therapy

OF PH

2016 HAP Guidelines

MDR HAP

Prior use of IV antibiotics within 90 days

MRSA

 Prior use of IV antibiotics within 90 days

Pseudomonas

 Prior use of IV antibiotics within 90 days

CID. 2016; 63: 1-51.

Empiric Therapy HAP

- All regimens should include coverage for:
 - S. aureus
 - Strong recommendation, low-quality evidence
 - Gram negative bacilli
 - P. aeruginosa
 - Strong recommendation, very low-quality evidence

Empiric Gram (+) Coverage HAP

- Methicillin-susceptible S. aureus (MSSA)
 - No RF for antimicrobial resistance
 - Not at high-risk for mortality
 - Septic shock
 - Need for mechanical ventilation
- Drug(s) of choice:
 - Piperacillin-tazobactam
 - Cefepime
 - Levofloxacin
 - Imipenem
 - Meropenem
 - Weak recommendation, very low-quality evidence

TOURO COLLEGE OF PHARMACY

CID. 2016; 63: 1-51.

Empiric Gram (+) Coverage HAP

- Methicillin-resistant *S. aureus (MRSA)*
 - RF for antimicrobial resistance
 - Treated in ICU where MRSA rates >20%
 - Units where MRSA rates unknown
 - High risk for mortality
- Drug(s) of choice:
 - Vancomycin
 - Linezolid
- Weak recommendation, very low-quality evidence

MRSA Treatment: Vancomycin or Linezolid?

- 2011 Meta-analysis
- Inclusion:
 - Randomized-controlled trials
 - Compared linezolid to a glycopeptide antibiotic
 - Pneumonia
 - Hospitalized patients
- Primary outcome:
 - Clinical success at test-of-cure (TOC)

Test-of-Cure Results

CHEST. 2011; 139(5): 1148-1155.

Empiric Gram (-) Coverage HAP

- Coverage of gram (-) bacilli
- Use of 1 anti-pseudomonal agent
 - No RF for antimicrobial resistance
 - Not at high-risk for mortality
- Weak recommendation, low-quality evidence

Empiric Gram (-) Coverage HAP

- Coverage of gram (-) bacilli
- Use of 2 anti-pseudomonal agents
 - RF for antimicrobial resistance
 - High risk for mortality
- Weak recommendation, very low-quality evidence

Other Recommendations for Empiric Therapy

- Avoid use of aminoglycosides
 - Weak recommendation, low-quality evidence

CID. 2016; 63: 1-51.

- Consider use of 2 anti-pseudomonal drugs:
 - Structural lung disease

Designing an Empiric HAP Regimen

No MRSA RF and NOT High-Risk Mortality	MRSA RF and NOT High-Risk Mortality	MDR RF and/or High- Risk Mortality
Piperacillin-tazobactam OR	Piperacillin-tazobactam OR	Piperacillin-tazobactam OR
Cefepime OR	Cefepime OR	Cefepime OR
Levofloxacin OR	Levofloxacin OR	Levofloxacin OR
Imipenem OR Meropenem	lmipenem OR Meropenem OR	lmipenem OR Meropenem OR
	Aztreonam	Amikacin OR Gentamicin OR Tobramycin OR
	PLUS	Aztreonam
	Vancomycin OR	PLUS
	Linezolid	Vancomycin OR
		Linezolid

Case #1

JZ is a 73 year old African American male admitted 4/24/17 with acute ischemic stroke.

- PMH: HTN, HLD, DM
- Current Medications:

Aspirin 81 mg PO daily Atorvastatin 80 mg PO daily Metformin 1000 mg PO daily Amlodipine 10 mg PO daily

Lisinopril 20 mg PO daily

TOURO COLLEGE OF PHARMACY

Case #1

Today (4/27) JZ is coughing up purulent sputum, has decreasing O_2 Sat and altered mental status. The primary team decides to intubated JZ.

• Vital Signs:

HR 101; RR 22; BP 104/69mmHg; Temp 100.6°F; O₂Sat 89% on 2L

• Anthropometrics:

75 kg; 170 cm

• Labs:

<u>134 | 100 | 24</u>/113 3.7 | 22 | 1.1 14.7 \ <u>10.4</u> / 213 / 31.6 \

• Chest X-Ray:

Endotracheal tube present, terminating 3 cm above the carina. Left lower lobe infiltrate suggestive of pneumonia vs atelectasis.

What type of pneumonia does JZ have?

- A. Ventilator-associated pneumonia
- B. Healthcare-associated pneumonia
- C. Aspiration pneumonia
- D. Hospital-acquired pneumonia

The medical team asks for your recommendation on empiric antibiotic therapy for JZ. MRSA resistance rates are unknown in this institution. Which of the following is an appropriate empiric regimen for JZ?

A. Vancomycin and piperacillin-tazobactam

- B. Meropenem and levofloxacin
- C. Vancomycin, cefepime and levofloxacin
- D. Linezolid and amikacin

Definition of VAP

- Unchanged from 2005 guidelines
- Development of symptoms > 48 hours after endotracheal intubation
 Admission
 - Radiographic infiltrate
 - Clinical criteria:
 - Fever

TOURO COLLEGE

OF PHARMACY

- Leukocytosis
- Purulent sputum
- Decline in oxygenation

Am J Respir Crit Care Med. 2005; 171: 388-416.

CID. 2016; 63: 1-51.

Diagnosis of VAP

- Microbiologic cultures recommended
 - Sputum
 - Blood
- Sampling via the non-invasive route preferred
 - Invasive route
 - Bronchoscopy
 - Blind bronchial sampling
 - Non-invasive route
 - Endotracheal aspiration (ETA)
- Weak recommendation, low quality evidence

Microbiologic Diagnosis of VAP

- Semi-quantitative results preferred
 - Quantitative
 - Semi-quantitative
- Weak recommendation, low quality evidence

CID. 2016; 63: 1-51.

OE LH

Risk Factors for MDROs in VAP

2005 HAP/VAP Guidelines

- Antimicrobial therapy in preceding 90 days
- Current hospitalization \geq 5 days
- High frequency antibiotic resistance in the community of specific hospital unit
- Presence or RF for HCAP
 - Hospitalization ≥ 2 days in last 90 days
 - Residence in NH or LTC
 - Home infusion therapy
 - Chronic dialysis within 30 days
 - Family member with MDRO
- Immunosuppressive disease or therapy

2016 VAP Guidelines

MDR VAP

- Prior use of IV antibiotics within 90 days
- Septic shock at time of VAP
- ARDS preceding VAP
- ≥ 5 days of hospitalization prior to VAP
- Acute RRT prior to VAP

MRSA

Prior use of IV antibiotics within 90 days

Pseudomonas

Prior use of IV antibiotics within 90 days

Empiric Therapy VAP

- All regimens should include coverage for:
 - S. aureus
 - P. aeruginosa
 - Gram negative bacilli
- Strong recommendation, low-quality evidence

CID. 2016; 63: 1-51.

Empiric Gram (+) Coverage VAP

- Methicillin-susceptible S. aureus (MSSA)
 - No RF for antimicrobial resistance
 - Treated in ICU where MRSA rates <10 20%
- Drug(s) of choice:
 - Piperacillin-tazobactam
 - Cefepime
 - Levofloxacin
 - Imipenem
 - Meropenem
- Weak recommendation, very low-quality evidence

TOURO COLLEGE OF PHARMACY

CID. 2016; 63: 1-51.

Empiric Gram (+) Coverage VAP

- Methicillin-resistant S. aureus (MRSA)
 - RF for antimicrobial resistance
 - Treated in ICU where MRSA rates >10 20%
 - Units where MRSA rates unknown
- Drug(s) of choice:
 - Vancomycin
 - Linezolid
- Weak recommendation, very low-quality evidence

Empiric Gram (-) Coverage VAP

- Coverage of gram (-) bacilli
- Use of 1 anti-pseudomonal agent
 - No RF for antimicrobial resistance
 - <10% of gram (-) isolates are resistant to an agent being considered for monotherapy
- Weak recommendation, low-quality evidence

Empiric Gram (-) Coverage VAP

- Coverage of gram (-) bacilli
- Use of 2 anti-pseudomonal agents from 2 different classes
 - RF for antimicrobial resistance
 - >10% of gram (-) isolates are resistant to an agent being considered for monotherapy
 - ICU where local antimicrobial susceptibility rates are unknown
- Weak recommendation, low-quality evidence

Summary of Meta-Analyses Comparing Different Classes of Gram-Negative Agents for Empiric Treatment of VAP

Comparison	Mortality	Clinical Response	Acquired Resistance	Adverse Events
	RR (95% CI)	RR (95% Cl)	RR (95% CI)	RR (95% CI)
Combination vs	1.11	0.89	1.13	0.90
monotherapy	(0.9, 1.38)	(0.75, 1.07)	(0.42, 3.00)	(0.69, 1.18)
Cephalosporin vs	0.97	0.92	2.36	1.01
non-cephalosporin	(0.74, 1.27)	(0.78, 1.09)	(0.63, 8.86)	(0.82, 1.25)
Quinolone vs non-	1.13	1.05	0.77	0.88
quinolone	(0.92, 1.39)	(0.91, 1.20)	(0.59, 1.01)	(0.78, 0.99)
Anti-Pseudomonal PCN vs non-anti- Pseudomonal PCN	1.12 (0.76, 1.66)	1.10 (0.80, 1.52)	Not Reported	0.96 (0.77, 1.20)
Aminoglycoside vs	1.15	0.82	Not Reported	0.96
non-aminoglycoside	(0.88, 1.50)	(0.71, 0.95)		(0.70, 1.33)
Carbapenem vs non-carbapenem	0.78 (0.65, 0.94)	1.02 (0.93, 1.12)	1.16 (0.53, 2.55)	1.08 (0.90, 1.28) <i>CID.</i> 2016; 63: 1-51.

Designing an Empiric VAP Regimen

Gram (+) Antibiotics with MRSA Activity	MSSA, Gram (-) and Antipseudomonal Antibiotics	Gram (-) Antibiotics with Antipseudomonal activity: Non-β-Lactam
Vancomycin OR	Piperacillin-tazobactam OR	Ciprofloxacin Levofloxacin OR
Linezolid	Cefepime Ceftazidime OR	Amikacin Gentamicin Tobramycin OR
	lmipenem Meropenem OR	Colistin Polymyxin B
	Aztreonam	

Emerging Therapies

Generic Name	Ceftolozane/Tazobactam	Ceftazidime/Avibactam
Brand Name	Zerbaxa	Avycaz
FDA Indications	cIAI (with metronidazole) cUTI (incl. pyelonephritis)	cIAI (with metronidazole) cUTI (incl. pyelonephritis)
<i>In vivo</i> Gram-negative Activity	Enterobacter cloacae Escherichia coli Klebsiella oxytoca Klebsiella pneumonia Proteus mirabilis Pseudomonas aeruginosa	Citrobacter freundii Citrobacter koseri Enterobacter cloacae Escherichia coli Klebsiella oxytoca Klebsiella pneumonia Proteus mirabilis Pseudomonas aeruginosa
<i>In vivo</i> Gram-positive Activity	Streptococcus anginosus Streptococcus constellatus Streptococcus salivarius	N/A
In vivo Anaerobic Activity	Bacteroides fragilis	N/A
ESBL Activity Avycaz [package insert]. Irvine, CA. Allergan USA Zerbaxa [package insert]. Whitehouse Station, J	Class A, C, D , Inc. 2016. J. Merck & Co., Inc. 2015.	Class A, C, D Carbapenemases (KPC)

Clinical Trials

- Ceftolozane/Tazobactam
 - Phase III Trial (ASPECT-NP) currently enrolling patients
 - Comparing ceftolozane/tazobactam to meropenem for VAP and HAP requiring ventilation
- Ceftazidime/Avibactam
 - Phase III Trial completed January 2016
 - Comparing ceftazidime/avibactam to meropenem in patients with nosocomial pneumonia

TOURO COLLEGE OF PHARMACY

https://clinicaltrials.gov/ct2/show/NCT02070757 https://clinicaltrials.gov/ct2/show/NCT01808092

Case #2

EK is a 26 year old Caucasian male admitted to the trauma ICU on 4/23/17 with multiple fractures and bilateral pneumothoraces requiring chest tube placement s/p ATV accident. EK is currently mechanically ventilated.

- PMH: None
- Current medications:

Enoxaparin 30 mg subcutaneously Q 12 hours Fentanyl Infusion IV 250 mcg/hr Propofol Infusion IV 22 mcg/kg/min Famotidine 20 mg via OGT Q 12 hours

Case #2

Today (4/27) EK has new onset of fever and a change in his chest x-ray.

• Vital Signs:

HR 97; RR 18; BP 120/71mmHg; Temp 101.7°F; O₂Sat 94% on 40% FiO₂

• Anthropometrics:

87 kg; 182 cm

• Labs:

<u>140 99 17 / 97</u>	16.9 <u>\ 12.4</u> / 178
3.7 21 0.8	/ 35.9 \

• Chest X-Ray:

Endotracheal tube present, terminating 2 cm above the carina. New right lower lobe opacity compared to previous studies. Representing pneumonia vs atelectasis, correlate clinically.

TOURO COLLEGE OF PHARMACY

Based on the EK's patient specific factors and the hospital's antibiogram below. Which of the following is an appropriate empiric regimen for EK?

Organism	Oxacillin	Vancomycin	Piperacillin- tazobactam	Meropenem	Cefepime	Levofloxacin
S. aureus	91	99	87	89	93	86
E. coli			85	90	93	79
P. aeruginosa			78	84	86	81
P. mirabilis			96	91	84	83

- A. Piperacillin-tazobactam plus levofloxacin
- B. Linezolid plus cefepime
- C. Meropenem
- D. Vancomycin plus meropenem plus levofloxacin

De-escalation of Antibiotics

- De-escalation therapy
 - Changing empiric broad-spectrum therapy to narrower spectrum regimen
- Fixed therapy
 - Maintaining broad-spectrum therapy for the duration of treatment
- Suggest antibiotic therapy be de-escalated rather than fixed

- Weak recommendation, very low-quality evidence

Optimal Antibiotic Duration

- VAP, a 7-day course of therapy recommended
 - No difference:
 - Mortality
 - Recurrent pneumonia
 - Treatment failure
 - Hospital LOS
 - Duration of mechanical ventilation

- Includes non-glucose fermenting gram (-) bacilli
- Strong recommendation; moderate quality evidence

8-Day vs 15-Day Course of Therapy

- 2003 Chastre, et al.
 - Prospective, randomized, double-blind, controlled study
- Inclusion criteria:
 - Mechanical ventilation for \geq 48 hours
 - ≥ 18 years old
 - Clinical suspicion of VAP
 - Positive quantitative cultures from bronchoscopy
 - Initiation of appropriate antibiotics within 24 hours of bronchoscopy

TOURO COLLEGE OF PHARMACY

8-Day vs 15-Day Course of Therapy

• Primary outcomes:

OF PH

Event	8-Day Regimen (n=197)	15-Day Regimen (n=204)	Between-Group Risk Difference (90% CI)
Death from all causes	37/197 (18.8)	35/204 (17.2)	1.6 (-3.7 to 6.9)
Pulmonary infection recurrence	57/197 (28.9)	53/204 (26)	2.9 (-3.2 to 9.1)
NF GNB	26/64 (40.6)	16/63 (25.4)	15.2 (3.9 to 26.6)
	Mea	n (SD)	Mean Difference (95% Cl)
No. Antibiotic-free days	13.1 (7.4)	8.7 (5.2)	4.4 (3.1 to 5.6)
TOURO COLI OF PHARMAC	LEGE CY	IAMA	2003.290(19).2588-2598

Short vs Long Course Therapy

• 2015 Cochrane Systematic Review

Outcomes	Assumed Risk Long-Course	Corresponding Risk Short-Course (95% CI)	Relative Effect (95% CI)	No. of Participants (Studies)
Mortality F/u: 28 days	175 per 1000	201 per 1000 (141 to 277)	OR 1.18 (0.77 to 1.8)	598 (3 studies)
Mortality NF-GNB F/u: 28 days	265 per 1000	255 per 1000 (123 to 450)	OR 0.95 (0.39 to 2.27)	179 (2 studies)

TOURO COLLEGE

OF PHARMACY

Pugh R, Grant C, Cooke RPD, Dempsey G.

Cochrane Database of Systematic Reviews 2015, Issue 8. Art. No.: CD007577.

Short vs Long Course Therapy

• 2015 Cochrane Systematic Review

Outcomes	Assumed Risk Long-Course	Corresponding Risk Short-Course (95% CI)	Relative Effect (95% CI)	No. of Participants (Studies)
Recurrence of PNA	180 per 1000	237 per 1000 (171 to 318)	OR 1.41 (0.94 to 2.12)	733 (19 studies)
Recurrence of PNA NF-GNB	247 per 1000	417 per 1000 (272 to 577)	OR 2.18 (1.14 to 4.16)	176 (2 studies)
28-Day Antibiotic-free Days	The mean 28-day intervention grou (2.26 to 5.78 high	v antibiotic free day up was 4.02 higher ner)	ys in the	431 (2 studies)
TOUR	O COLLEGE			

OF PHARMACY Pugh R, Grant C, Cooke RPD, Dempsey G. Cochrane Database of Systematic Reviews 2015, Issue 8. Art. No.: CD007577.

Optimal Antibiotic Duration

- HAP, a 7-day course of therapy recommended
 - No specific studies available for HAP
 - Data extrapolated from VAP
 - Increased 28-day antibiotic free days
 - Reduced recurrent VAP due to MDR pathogens
 - Strong recommendation; very-low quality evidence

Summary

- Definitions of HAP and VAP are unchanged from 2005 guidelines
- Diagnosis of HAP and VAP should be based on clinical criteria and non-invasive semi-quantitative cultures
- Risk factors for MDROs differ between HAP and VAP patients
- Empiric therapy should be based on patient risk factors and local antimicrobial resistance patterns
- Short-course therapy with de-escalation recommended

THANK YOU

