ID ABC'S: ANTIBIOTICS, BACTERIA, AND CORE CONCEPTS

ANGELA LOO, PHARM.D., BCPS-AQ ID, BCIDP NEWYORK-PRESBYTERIAN/WEILL CORNELL MEDICAL CENTER JANUARY 8, 2020

DISCLOSURE STATEMENT

 The speaker has no conflicts of interest or relationships with commercial entities that may be referenced in this presentation

AT THE COMPLETION OF THIS ACTIVITY, PHARMACISTS WILL BE ABLE TO:

- Discuss factors to consider in the selection of an antimicrobial regimen
- Interpret an antimicrobial susceptibility report using knowledge of minimum inhibitory concentrations and antimicrobial breakpoints
- Apply pharmacokinetic and pharmacodynamic principles in the selection of appropriate antimicrobial regimens

AT THE COMPLETION OF THIS ACTIVITY, PHARMACY TECHNICIANS WILL BE ABLE TO:

- Describe differences between empiric and definitive antimicrobial therapy
- Define minimum inhibitory concentration and antimicrobial breakpoint
- List factors for consideration in the selection of antimicrobial therapy regimen

CASE I

EK is a 28-year-old female who presents to the emergency department with fevers, flank pain, and dysuria. She has a leukocytosis (WBC 17) but is hemodynamically stable. The medical intern turns to you and asks what antimicrobial therapy to initiate. What antibiotic would you recommend empirically?

INFECTIOUS DISEASES WORKFLOW

EMPIRIC ANTIMICROBIAL THERAPY

- Empiric therapy = Educated guess, based on clinical diagnosis, clinical evidence/experience
- How do we determine appropriate empiric therapy?

WHICH OF THE FOLLOWING DOES NOT REQUIRE CONSIDERATION IN THE SELECTION OF EMPIRIC ANTIMICROBIAL THERAPY?

- A. Suspected site of infection
- B. Antimicrobial breakpoint
- C. Recent antibiotic exposures
- D. Community-acquired vs. hospital acquired

EMPIRIC THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Suspected site of infection	Spectrum of activity	Recent antibiotic exposures
Community-acquired vs hospital acquired infection	PK/PD	Allergies
Local susceptibilities	Adverse reactions	Comorbidities
	Drug interactions	Immune status
	Cost	Pregnancy status
		Renal/hepatic function
		Weight (obesity)

COMMON BACTERIAL PATHOGENS BY SITE

Bacterial meningitis

Community-acquired

- Streptococcus pneumoniae
- Neisseria meningitides
- Listeria monocytogenes

Endocarditis

- Staphylococcus aureus
- Staphylococcus epidermidis
- Viridans group streptococci
- Enterococcus species

Urinary tract

Community-acquired

- E. coli
- Proteus mirabilis
- Klebsiella pneumoniae

Hospital-acquired

- Staphylococcus aureus
- Pseudomonas
 aeruginosa

Hospital-acquired E. coli

- Proteus mirabilis
- Klebsiella pneumoniae
- Enterococcus species
- Pseudomonas aeruginosa

PneumoniaCommunity-acquiredStreptococcus pneumoniae

- Haemophilus influenzae
- Atypicals (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumoniae)

Hospital-acquired

- Staphylococcus aureus
- Pseudomonas
 aeruginosa
- Enterobacteriaceae

Skin and soft tissue

- Staphylococci (especially Staphylococcus aureus)
- Streptococcus species

Intra-abdominal

Community-acquired

- Enterobacterales
- Streptococcus species
- Anaerobes (Bacteroides)

Hospital-acquired

- Staphylococcus aureus
- Pseudomonas
 aeruginosa
- Enterobacterales

NATIONAL GUIDELINE RECOMMENDATIONS

 Guidelines from Infectious Diseases Society of America (IDSA) (<u>https://www.idsociety.org/</u>) can assist in selection of empiric therapy

2010 IDSA Recommendations for Acute Pyelonephritis

Microbial spectrum consists mainly of Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae

[Ciprofloxacin or levofloxacin] "is an appropriate choice for therapy...where the prevalence of **resistance of community uropathogens is not known to exceed 10%**"

[Trimethoprim-sulfamethoxazole] "is an appropriate choice for therapy **if the uropathogen is known to be susceptible**"

An initial intravenous dose of a long-acting parenteral antimicrobial, such as 1 g of ceftriaxone or a consolidated 24-h dose of an aminoglycoside

LOCAL SUSCEPTIBILITIES ARE KEY

Cumulative antibiogram—annual summary of local susceptibility rates, specific to each institution

	Penicillins		Cephalosporins		Monobactam	Aminoglycosides		Fluoroquinolone	Other			
		Amp/Sulbact	Pip/Tazo	Ceftriaxone	Ceftazidime	Cefepime ¹	Aztreonam	Gentamicin	Tobramycin	Amikacin	Levofloxacin	Trimeth/Sulfa
	# tested	A/S	P/T	СТХ	CEZ	CPM	AZM	GEN	TOB	AMI	LVX	T/S
Escherichia coli	5163											
In-patients, Non-ICU	528	50%	95%	81%	85%	84%	82%	85%	84%	99%	67%	67%
ICU patients	147	48%	92%	77%	81%	80%	79%	83%	80%	99%	67%	59%
ED patients	1484	55%	98%	86%	90%	88%	86%	87%	87%	99%	73%	70%
Out-patients Only	3004	59%	98%	91%	93%	92%	91%	90%	89%	100%	76%	72%
Klebsiella pneumoniae	1428											
In-patients, Non-ICU	257	68%	88%	86%	85%	87%	87%	91%	87%	97%	89%	73%
ICU patients	99	76%	90%	85%	85%	87%	85%	91%	89%	97%	92%	76%
ED patients	405	81%	95%	91%	91%	91%	90%	95%	91%	99%	94%	79%
Out-patients Only	667	82%	95%	95%	95%	95%	95%	97%	96%	100%	96%	82%

Antibiogram 2018 (% Susceptible) - Adult

 Can work with your microbiology laboratory to get infection source-specific information and develop local guidelines

NYP/WC E. coli urine isolates: 72% S Levofloxacin, 69% S TMP/SMX, 87% S Gentamicin

EMPIRIC THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Suspected site of infection	Spectrum of activity	Recent antibiotic exposures
Community-acquired vs hospital acquired infection	PK/PD	Allergies
Local susceptibilities	Adverse reactions	Comorbidities
	Drug interactions	Immune status
	Cost	Pregnancy status
		Renal/hepatic function
		Weight (obesity)

ANTIMICROBIAL SPECTRUM OF ACTIVITY

• Cover the most likely pathogens while considering risk of future resistance

Inappropriate use of antimicrobials increases risk of resistance

- Vancomycin \rightarrow Vancomycin-resistant enterococci
- Carbapenems → Carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa
- Fluoroquinolones → Fluoroquinolone-resistant Gramnegative organisms, MRSA

Kumar A et al. Crit Care Med. 2006 Jun;34(6):1589-96 Cetinkaya Y et al. Clin Micr Rev 2000;686-707 Dalhoff A. Interdiscip Perspect Infect Dis 2012 <u>https://doi.org/10.1155/2012/976273</u> Richter SE et al. Open Forum Infect Dis 2019;6(3). <u>https://doi.org/10.1093/ofid/ofz027</u>

PHARMACOKINETICS (PK) AND PHARMACODYNAMICS (PD)

 Achieving PK/PD targets not only increases likelihood of clinical success but also chance of bacterial eradication and limits the emergence of resistance

PHARMACOKINETICS (PK) AND PHARMACODYNAMICS (PD)

 Achieving PK/PD targets not only increases likelihood of clinical success but also chance of bacterial eradication and limits the emergence of resistance

PHARMACOKINETICS (PK) AND PHARMACODYNAMICS (PD)

 Achieving PK/PD targets not only increases likelihood of clinical success but also chance of bacterial eradication and limits the emergence of resistance

PHARMACOKINETIC FACTORS

Levison ME, Levison JH. Infect Dis Clin N Am .2009;23:791-815 Meagher AK, Ambrose PG, Grasela TH, Grosse JE. Clin Infect Dis. 2005;41(suppl 5):S333-S340

19

PHARMACOKINETIC FACTORS—DRUG PENETRATION

	"Lower" concentration examples	"Higher" concentration examples
Blood	 Tigecycline Cmax ~0.6 – 0.8 mcg/mL 	
CNS	 Beta-lactamase inhibitors (eg Tazobactam 10% CSF:Serum) 	 Metronidazole 86% CSF:Serum Ceftriaxone ~10% CSF:Serum
Lung	Gentamicin 20% ELF:Serum	Cefepime 100% ELF:Serum
Urine	• Moxifloxacin	 Levofloxacin, Ciprofloxacin Aminoglycosides, Vancomycin, Beta-lactams Nitrofurantoin (urine but not kidney parenchyma)

ELF=Epithelial lining fluid

 Note: must consider absolute concentration at site of infection, not just % penetration Boselli et al. Intensive Care Med. 2004;30*5):989-991 Craig WA. Clin Infect Dis. 1997;24(Suppl 2):S266-75 Drusano GL. J. Antimicrob Chemother. 2011;66(suppl 3):iii61-iii67 Frasca D et al. Antimicrob Agents Chemother. 2014;58(2):1024-1027 Nau R, Sorgel F, Eiffert H. Clin Microbiol Rev. 2010;23(4):858-883 Nicolau DP et al. J. Antimicrob Chemother. 2015;70(10):2862-2869 Tigecycline prescribing information. Wyeth Pharmaceuticals. Sept 2013.

EMPIRIC THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Suspected site of infection	Spectrum of activity	Recent antibiotic exposures
Community-acquired vs hospital acquired infection	PK/PD	Allergies
Local susceptibilities	Adverse reactions	Comorbidities
	Drug interactions	Immune status
	Cost	Pregnancy status
		Renal/hepatic function
		Weight (obesity)

CASE I

- EK is a 28-year-old female who presents to the ER with fevers, flank pain, and dysuria. She has a leukocytosis (WBC 17) but is hemodynamically stable. The medical intern turns to you and asks what antibiotic therapy to initiate. You, the astute pharmacist, ask several clarifying questions and learn the following information:
- PMH: Recently completed levofloxacin course for sinusitis, No recent hospitalizations
- Allergy: Penicillin (anaphylaxis 2 years ago)
- Presumed diagnosis: Pyelonephritis

WHICH OF THE FOLLOWING ANTIBIOTICS IS MOST APPROPRIATE TO RECOMMEND?

- 28 year old female presents to the ER with fevers, flank pain, and dysuria
- PMH: Recently completed levofloxacin course for sinusitis, No recent hospitalizations
- Allergy: Penicillin (anaphylaxis 2 years ago)
- Presumed diagnosis: Pyelonephritis
- A. Cephalexin
- B. Ciprofloxacin
- C. Gentamicin
- D. Nitrofurantoin

INFECTIOUS DISEASES WORKFLOW

DEFINITIVE ANTIMICROBIAL THERAPY

- Once pathogen identified and susceptibility results available, therapy should be de-escalated from empiric regimen to a narrower, targeted antibiotic
- Culture information useful to guide antibiotic choice

Organism	1 H	Methicillin-Susceptible Staphyloco	ccus aureus
Organism	🔐 H		[ug/mL]
Methicillin-Susceptible Staphyloco	ccus aureus		
Method	H	Minimum Inhibitory Concentration	La construction de la constructi
Clindamycin		<=0.25 S	[ug/mL]
This organism does not demonstra	te inducible cli	ndamycin resistance in vitro.	
Erythromycin		>8 R	[ug/mL]
Oxacillin		0.5 S	[ug/mL]
Oxacillin-susceptible staphylococci cephalosporins and carbapenems.	are susceptible	e to penicillinase-stable penicillins, bet	ta-lactamase inhibitor combinations,
Penicillin G		>8 R	[ug/mL]
Rifampin		<=1 S	[ug/mL]
Tetracycline		<=2 S	[ug/mL]
Trimeth/Sulfamethoxazole		>2/38 R	[ug/mL]
Vancomycin		15	[ug/mL]

CASE 2

- A 60-year-old male with a history of meningioma and hydrocephalus requiring ventriculoperitoneal shunt placement 2 months ago was transferred from an OSH with nausea, emesis, increased lethargy, and low-grade fever.
- A shunt tap revealed 150 nucleated cells and low glucose in CSF. Vancomycin and cefepime are initiated.
- 48 hours later, both blood and CSF cultures reveal *Staphylococcus aureus*.
- Which antimicrobial therapy would you recommend?

Organism	🙀 H	Methicillin-Susceptible Staphyloco	ccus aureus
Organism	解 H		[ug/mL]
Methicillin-Susceptible St	aphylococcus aureus		
Method	H	Minimum Inhibitory Concentration	1
Clindamycin		<=0.25 S	[ug/mL]
This organism does not d	lemonstrate inducible clin	ndamycin resistance in vitro.	
Erythromycin		>8 R	[ug/mL]
Oxacillin		0.5 S	[ug/mL]
Oxacillin-susceptible stap cephalosporins and carba	ohylococci are susceptible apenems.	e to penicillinase-stable penicillins, be	ta-lactamase inhibitor combinations,
Penicillin G		>8 R	[ug/mL]
Rifampin		<=1 S	[ug/mL]
Tetracycline		<=2 S	[ug/mL]
Trimeth/Sulfamethoxazole		>2/38 R	[ug/mL]
Vancomycin		15	[ug/mL]

DEFINITIVE THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Site of infection	Spectrum of activity	Allergies
MIC (Susceptibility)	PK/PD	Comorbidities
Breakpoint/Interpretation	Adverse reactions	Immune status
Resistance mechanisms	Drug Interactions	Pregnancy status
	Cost	Renal/hepatic function
	Outcomes data	Weight (obesity)
	Outpatient feasibility	

MIC

 Minimum Inhibitory Concentration (MIC) = minimum antimicrobial concentration that inhibits visual bacterial growth *in vitro*

John CN et al. Front Microbiol. 2019;10:1021 Shutterstock.com. Accessed December 2019.

MIC

 Minimum Inhibitory Concentration (MIC) = minimum antimicrobial concentration that inhibits visual bacterial growth *in vitro*

John CN et al. Front Microbiol. 2019;10:1021 Shutterstock.com. Accessed December 2019.

BREAKPOINT AND INTERPRETATIVE CRITERIA

Standard reference value correlating *in vitro* antimicrobial MIC to clinical efficacy

Susceptible

 Inhibited by usually achievable concentrations of drug with the recommended dosage, resulting in likely clinical efficacy

Intermediate

- Near usually achievable serum concentrations, response rates may be lower
- May be efficacious in higher doses or sites where drug physiologically concentrates

Resistant

 Unlikely to inhibit at usually achievable concentrations

Susceptible Dose-Dependent

 Dependent on the dosing regimen (need higher drug exposure than the dose used to establish the susceptible breakpoint)

DETERMINATION OF BREAKPOINTS

- Based on:
 - Wild-type distribution of MICs for the organism
 - Pharmacokinetics/pharmacodynamics of the drug
 - Clinical outcomes data for treatment of infections when the antibacterial is used
- Determined by:
 - Clinical Laboratory and Standards Institute (CLSI)
 - European Committee on Antimicrobial Susceptibility Testing (EUCAST)
 - FDA

INTERPRETING SUSCEPTIBILITIES

- Cannot just "pick lowest MIC"
- Each bug/drug combination has different breakpoints

Drug	Patient MIC	Interpretation
Clindamycin	≤ 0.25	S
Erythromycin	> 8	R
Oxacillin	0.5	S
Penicillin	> 8	R
Rifampin	≤	S
Tetracycline	≤ 2	S
TMP/SMX	> 2/38	R
Vancomycin	0.25	S

 \leq means lab will not report any lower MICs

INTERPRETING SUSCEPTIBILITIES

- Cannot just "pick lowest MIC"
- Each bug/drug combination has different breakpoints

Drug	Patient MIC	Breakpoint S \leq	Interpretation
Clindamycin	≤ 0.25	0.5	S
Erythromycin	> 8	0.5	R
Oxacillin	0.5	2	S
Penicillin	> 8	0.12	R
Rifampin	≤	Ι	S
Tetracycline	≤ 2	4	S
TMP/SMX	> 2/38	2/38	R
Vancomycin	0.25	2	S

Section 2 means lab will not report any lower MICs

CLSI BREAKPOINTS (MI00)

☆ 🗛

Quick Links

New Products

Companion Products

Crosswalks

ISO Documents

Packages

Subscription Products

Free Resources

Access Our Free Resources

M100 and M60 Free

With these read-only web versions of M100 and M60, you can now quickly reference the most trusted AST and antifungal breakpoints from anywhere with an Internet connection. Available online as a convenient companion to our M100 document and M60 document.

Order Form, Catalog, & More

CLSI BREAKPOINTS (MI00)

Click here to use guest access

Email

WELCOME TO CLSI M100 AND M60

CLSI is offering new ways to access the M100 and M60 data you need, when and where you need it!

- Free M100 Data: Quickly reference the most trusted AST breakpoints as a convenient companion to the M100 document.
- Free M60 Data: Quickly reference the most trusted antifungal information as a convenient companion to the M60 document.

CLSI BREAKPOINTS (MI00)

36
CLSI BREAKPOINTS (MI00)

LSI							
CLSI M10	0-ED29:2019 Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition						
	Pseudomonas Search within this Document						
	Table of Contents < Previous Next >						
10 July 2019							
To:	Recipients of M100, 29th ed.						
From:	Jennifer K. Adams, MT(ASCP), MSHA Vice President, Standards and Quality						
Subject:	Revisions to Definitions						
This notice is intended to inform users of revisions to two definitions in the Instructions for Use of Tables in CLSI document M100, <i>Performance Standards for Antimicrobial Susceptibility Testing</i> , 29th ed. The revisions are shown below as highlighted and/or stricken text.							
susceptib regimen t results (e higher do	e-dose dependent (SDD) - a category defined by a breakpoint that implies that susceptibility of an isolate depends on the dosing nat is used in the patient. To achieve levels that are likely to be clinically effective against isolates for which the susceptibility testing ther minimal inhibitory concentrations [MICs] or zone diameters) are in the SDD category, it is necessary to use a dosing regimen (ie, see, more frequent doses, or both) that results in higher drug exposure than that achieved with the dose that was used to establish the						

CLSI BREAKPOINTS (MI00)

Home

Top

Bottom

Full View

Search

Search Results

Search Tokens: Pseudomonas, Scope: CLSI M100 ED29:2019

• CLSI M100-ED29:2019 Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition

- Overview of Changes

- Introduction to Tables 3B and 3C. Tests for Carbapenemases in Enterobacteriaceae and Pseudomonas aeruginosa
- Table 3B. CarbaNP Test for Suspected Carbapenemase Production in Enterobacteriaceae and Pseudomonas aeruginosa¹⁻⁷
- Table 3B-1. Modifications of Table 3B When Using MIC Breakpoints for Carbapenems Described in M100-S20 (January 2010)¹⁻⁵
- Table 3C. Modified Carbapenem Inactivation Methods for Suspected Carbapenemase Production in Enterobacteriaceae and Pseudomonas aeruginosa¹⁻⁴
- Table 1A. Suggested Groupings of Antimicrobial Agents Approved by the US Food and Drug Administration for Clinical Use That Should Be Considered for Testing and Reporting on Nonfastidious Organisms by Microbiology Laboratories in the United States
- Table 2B-3. Zone Diameter and MIC Breakpoints for Burkholderia cepacia complex

- Table 2B-5. MIC Breakpoints for Other Non-Enterobacteriaceae (Refer to General Comment 1)
- Table 2A. Zone Diameter and MIC Breakpoints for Enterobacteriaceae
- Table 2B-2. Zone Diameter and MIC Breakpoints for Acinetobacter spp.

CLSI BREAKPOINTS (MI00)

T. + (D		Dial	Interpretive Categories and Zone Diameter Breakpoints, nearest whole mm		Interpretive Categories and MIC Breakpoints, µg/mL		tegories ints,		
Group	Antimicrobial	Content	S	I	R	S	I	R	Comments
PENICILLINS									
0	Piperacillin	100 µg	≥ 21	15-20	≤ 14	≤ 16	32-64	≥ 128	(5) Breakpoints for piperacillin (alone or with tazobactam) are based on a piperacillin dosage regimen of at least 3 g administered every 6 h.
B-LACTAM CO	MBINATION AGENTS								
A	Piperacillin- tazobactam	100/10 µg	≥ 21	15-20	<u>≤</u> 14	≤ 16/4	32/4- 64/4	≥ 128/4	(6) Breakpoints for piperacillin (alone or with tazobactam) are based on a piperacillin dosage regimen of at least 3 g administered every 6 h.
В	Ceftazidime- avibactam	30/20 µg	≥ 21	-	<u>≤</u> 20	≤ 8/4	-	≥ 16/4	(7) Breakpoints are based on a dosage regimen of 2.5 g (2 g ceftazidime + 0.5 g avibactam) administered every 8 h over 2 h.
В	Ceftolozane- tazobactam	30/10 µg	≥ 21	17-20	≤ 16	≤ 4/4	8/4	≥ 16/4	(8) Breakpoints are based on a dosage regimen of 1.5 g administered every 8 h.
	1		1	1	1				

WHICH OF THE FOLLOWING IS TRUE REGARDING CULTURE AND SUSCEPTIBILITY TESTING RESULTS?

- A. Breakpoint values for bacterial pathogens are standardized nationally and internationally
- B. Generally, the antibiotic with the lowest minimum inhibitory concentration is most effective
- C. A culture result interpretation of "susceptible" to an antibiotic indicates that the antibiotic will work at all infection sites
- D. Susceptibility breakpoint values may change with new literature on antimicrobial pharmacokinetic/pharmacodynamics or new clinical outcomes data

DEFINITIVE THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Site of infection	Spectrum of activity	Allergies
MIC (Susceptibility)	PK/PD	Comorbidities
Breakpoint/Interpretation	Adverse reactions	Immune status
Resistance mechanisms	Drug Interactions	Pregnancy status
	Cost	Renal/hepatic function
	Outcomes data	Weight (obesity)
	Outpatient feasibility	

RESISTANCE MECHANISMS

- In vitro susceptibility does not necessarily predict development of resistance/clinical failure
- Examples:
 - Rifampin monotherapy—rapid emergence of resistance due to high spontaneous chromosomal mutations
 - AmpC beta-lactamases—inducible cephalosporinases
 - Extended spectrum beta-lactamases (ESBL)—may be reported "resistant" to one 3rd generation cephalosporin and "susceptible" to another

42

DEFINITIVE THERAPY: FACTORS FOR CONSIDERATION

BUG	DRUG	PATIENT
Site of infection	Spectrum of activity	Allergies
MIC (Susceptibility)	PK/PD	Comorbidities
Breakpoint/Interpretation	Adverse reactions	Immune status
Resistance mechanisms	Drug Interactions	Pregnancy status
	Cost	Renal/hepatic function
	Outcomes data	Weight (obesity)
	Outpatient feasibility	

OUTCOMES DATA: WORSE OUTCOMES WITH VANCOMYCIN VS BETA-LACTAM FOR MSSA

Authors	Design	Results (Vancomycin vs Beta-lactam)
Chang FY et al.	Multicenter, prospective observational study N=505 patients with S. aureus bacteremia	Significantly higher bacteriologic failure (persistent bacteremia or relapse)
Stryjewski ME et al.	Prospective observational study N=123 hemodialysis-dependent patients with MSSA bacteremia	Significantly higher treatment failure (death or recurrence) for those continuing on vancomycin vs switch to 1 st generation cephalosporin (OR 3.5)
Schweizer ML et al.	Retrospective cohort study N=267 patients with MSSA bacteremia	Significantly higher 30-day in-hospital mortality for those continuing on vancomycin vs switched to nafcillin or cefazolin
Kim SH et al.	Retrospective cohort study N=294 patients with MSSA bacteremia	Significantly higher mortality (37% vs 18%, p=0.02) vs beta-lactam
McDanel JS et al.	Retrospective cohort study N=5633 patients with MSSA bacteremia	Significantly higher mortality (35% higher) vs beta- lactam; 43% higher vs nafcillin/oxacillin/cefazolin

OUTCOMES DATA: CEFAZOLIN VS PENICILLINS

- Theoretical concern for inoculum effect with cefazolin
- Recent meta-analysis of 14 retrospective cohort studies of MSSA bacteremia
 - Cefazolin at least as effective as antistaphylococcal penicillins (oxacillin, nafcillin), possibly lower rates of nephrotoxicity

30-day all-cause mortality

	Cefa	zolin		ASP					
Study	Events	Total	Events	Total	Relative	Risk	RR	95%-CI	Weight
Bai 2015	11	105	62	249	+		0.42	[0.23; 0.77]	13.2%
Davis 2018	83	792	731	6520	+		0.93	[0.75; 1.16]	33.0%
Flynt 2017	4	68	4	81			1.19	[0.31; 4.59]	3.5%
Kimmig 2018	8	61	20	131	- X		0.86	[0.40; 1.84]	9.3%
Lee 2011	2	41	2	41			1.00	[0.15; 6.76]	1.8%
Lee 2018	2	79	13	163	++		0.32	[0.07; 1.37]	3.0%
Li 2014	0	59	1	34 ·		_	0.19	[0.01; 4.62]	0.7%
McDanel 2017	113	1163	307	2004	+		0.63	[0.52; 0.78]	33.8%
Monogue 2018	0	71	3	71 -		-	0.14	[0.01; 2.72]	0.8%
Renaud 2011	1	14	1	13			0.93	[0.06; 13.37]	0.9%
Random effects model	224	2453	1144	9307	♦		0.70	[0.54; 0.91]	100.0%
Heterogeneity: I ² = 36%, τ	² = 0.0424	, p = 0	.12			1			
				0.	01 0.1 1	10	100		
				Favou	irs Cefazolin	Favour	s ASP		

Nephrotoxicity

	Cefa	zolin		ASP				
Study	Events	Total	Events	Total	Relative Risk	RR	95%-CI	Weight
Flynt 2017	9	68	26	81		0.41	[0.21: 0.82]	54.3%
Lee 2018	1	79	1	79		1.00	[0.06; 15.71]	3.4%
Li 2014	0	59	1	34 -		0.19	[0.01; 4.62]	2.5%
Monogue 2018	2	71	12	71	<u> </u>	0.17	[0.04; 0.72]	12.0%
Rao 2015	1	103	0	58	<u>_</u>	- 1.70	[0.07; 40.96]	2.5%
Youngster 2014	4	119	42	366	- <u></u>	0.29	[0.11; 0.80]	25.3%
Random effects model	17	499	82	689	-	0.36	[0.21: 0.59]	100.0%
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.70		Г			[]	
, ·	-,,,			0.0	1 0.1 1 10	100		
				Favo	urs Cefazolin Favou	rs ASP		

PK CONSIDERATIONS: CENTRAL NERVOUS SYSTEM PENETRATION

Therapeutic Levels in CSF With or Without Inflammation									
Chloramphenicol	Metronidazole	Linezolid							
Rifampin	SMX/TMP								
Therapeutic Levels in CSF With Inflammation of Meninges									
Penicillin	Ampicillin	Oxacillin							
Piperacillin	Aztreonam	Cefuroxime							
Ceftriaxone	Ceftazidime	Cefepime							
Imipenem	Meropenem	Fluroquinolones							
Vancomycin									
Nontherapeutic Levels in CSF With or Without Inflammation									
Aminoglycosides	Beta-lactamase inhibitors	I st and 2 nd gen cephs (except cefuroxime)							
Clindamycin	Daptomycin	Ertapenem							

46

CASE 2

- AJ is a 60 year old male with a history of meningioma and hydrocephalus requiring ventriculoperitoneal (VP) shunt placement 2 months ago, who was transferred from an OSH with nausea, emesis, increased lethargy, and low grade fever.
- A shunt tap revealed 150 nucleated cells and low glucose in CSF.Vancomycin and cefepime are initiated.
- 48 hours later, both blood and CSF cultures reveal *Staphylococcus aureus*.
- Which of the following therapies would you recommend?
 - A. Cefazolin
 - B. Oxacillin
 - C. Rifampin
 - D. Vancomycin

Organism	N H	Methicillin-Susceptible Staphyloco	occus aureus
Organism	🙀 H		[ug/mL]
Methicillin-Suscepti	ble Staphylococcus aureus		
Method	H	Minimum Inhibitory Concentration	1
Clindamycin		<=0.25 S	[ug/mL]
This organism does	not demonstrate inducible clir	ndamycin resistance in vitro.	
Erythromycin		>8 R	[ug/mL]
Oxacillin		0.5 S	[ug/mL]
Oxacillin-susceptible cephalosporins and	e staphylococci are susceptible carbapenems.	to penicillinase-stable penicillins, be	ta-lactamase inhibitor combinations,
Penicillin G		>8 R	[ug/mL]
Rifampin		<=1 S	[ug/mL]
Tetracycline		<=2 S	[ug/mL]
Trimeth/Sulfamethoxazole		>2/38 R	[ug/mL]
Vancomycin		1 S	[ug/mL]

ANTIBIOTIC PHARMACODYNAMIC TARGETS

OPTIMIZING PHARMACODYNAMICS: AMINOGLYCOSIDES

- Analysis of data from 4 randomized controlled trials including 236 patients on conventional dose gentamicin, tobramycin, or amikacin for gramnegative sepsis
- Clinical response associated with Cmax: MIC

OPTIMIZING PHARMACODYNAMICS: AMINOGLYCOSIDES

Dosing Method*	Gentamicin Tobramycin	Amikacin
Conventional	I – 2 mg/kg q8h	7.5 mg/kg q12h
Extended interval	5 – 7 mg/kg q24h	15 – 20 mg/kg q24h

*Assuming normal renal function

Pharmacodynamic Goal Peak: MIC 8 - 12

- Extended and continuous infusions increase T> MIC
- Clinical outcomes data comparing prolonged infusions to intermittent are conflicting
 - Low sample sizes
 - Heterogeneous patient populations
 - Low-MIC pathogens

- Extended and continuous infusions increase T> MIC
- Clinical outcomes data comparing prolonged infusions to intermittent are conflicting
 - Low sample sizes
 - Heterogeneous patient populations
 - Low-MIC pathogens

- Extended and continuous infusions increase T> MIC
- Clinical outcomes data comparing prolonged infusions to intermittent are conflicting
 - Low sample sizes
 - Heterogeneous patient populations
 - Low-MIC pathogens

- Extended and continuous infusions increase T> MIC
- Clinical outcomes data comparing prolonged infusions to intermittent are conflicting
 - Low sample sizes
 - Heterogeneous patient populations
 - Low-MIC pathogens

LOWER MORTALITY WITH PROLONGED INFUSION

- 2018 metaanalysis of 22 RCT (1876 patients)
- Prolonged (continuous or ≥3 h) infusion of antipseudomonal beta-lactams vs. short-term administration (≤60 min) in sepsis

	Prolonged		Short-te	erm	weight	RISK ratio (95% CI)	Risk ratio (95% Ci
	Events	Total	Events	Total			
Abdul-Aziz (2016) ¹⁵	18	70	26	70	18.5%		0.69 (0.42-1.14)
Angus (2000) ²³	3	10	9	11	4.8%		0.37 (0.14-0.98)
Bao (2016) ²⁴	0	25	0	25			Not estimable
Chytra (2012) ¹⁶	21	120	28	120	18.1%	_ _	0.75 (0.45-1.24)
Cotrina-luque (2016) ²⁶	0	40	1	38	0.5%		0.32 (0.01-7.55)
Cousson (2005)27	2	8	3	8	2.1%		0.67 (0.15-2.98)
Dulhunty (2013)17	2	30	5	30	1.9%		0.40 (0.08-1.90)
Dulhunty (2015)14	39	212	52	220	33-9%		0.78 (0.54-1.13)
Georges (2005) ²⁸	3	26	3	24	2.1%		0.92 (0.21-4.14)
Lagast (1983) ³⁰	5	20	4	25	3.4%		1.56 (0.48-5.06)
Lau (2006) ³¹	1	130	3	132	0.9%		0.34 (0.04-3.21)
Lips (2014) ³²	1	10	1	9	0.7%		0.90 (0.07-12.38)
Rafati (2006) ³⁵	5	20	6	20	4.5%		0.83 (0.30-2.29)
Roberts (2010) ³⁶	0	8	0	8			Not estimable
Sakka (2007) ³⁷	1	10	2	10	0-9%		0.50 (0.05-4.67)
Wang (2009) ³⁸	0	15	0	15			Not estimable
Wang (2014) ³⁹	7	38	16	40	7.8%	_	0.48 (0.21-0.99)
Total (95% Cl)		792		805	100.0%	•	0.70 (0.56-0.87)
Total events	108		159			· · · · · · · · · · · · · · · · · · ·	
Heterogeneity: $\tau^2=0.00$; χ^2	=6·47, df=:	13 (p=0·93	s); l ² =0%				50

Test for overall effect: Z=3.25 (p=0.001)

Favours short-term

Favours prolonged

PHARMACODYNAMIC BREAKPOINTS

Drug	Dose (normal renal	"PD Breakpoint"	CLSI Breakpoint
	function)	MIC (mg/L)	MIC (mg/L)*
Cefepime	l g q8h	2	S < J
	2 g q12h	2	$5 \leq 2$
	2 g q8h	8	S-DD 4-8
Meropenem	500 mg q6h	2	
	l g q8h	2	
	l g over 3 hrs q8h	4	S ≤
	2 g q8h	4	
	2 g over 3 hrs q8h	16	
Piperacillin/	4.5 g q8h	4	
Tazobactam	4.5 g q6h	8	S ≤ 16
	4.5 g over 4 hrs q8h	16	

*Enterobacterales

Adapted from Deryke CA, et al. Diagn Microbiol Infect Dis 2007; 58(3): 337-44

Lodise TP, et al. Pharmacotherapy. 2006; 26: 1320-32 Tam VH, et al. Antimicrob Agents Chemother 2003;47:1853-61

CASE 3

- 65 y/o IVDU with multiple positive blood cultures with Pseudomonas aeruginosa
- Dosing weight = 70 kg
- CrCl = 90 mL/min
- Allergies: NKDA
- Team would like to use dual therapy with beta-lactam and aminoglycoside until endocarditis is ruled out. Which aminoglycoside would you choose?

Drug	MIC	Interpretation
Aztreonam	4	Susceptible
Ceftazidime	8	Susceptible
Cefepime	8	Susceptible
Meropenem	8	Resistant
Piperacillin- tazobactam	16	Susceptible
Amikacin	4	Susceptible
Gentamicin	4	Susceptible
Levofloxacin	Ι	Susceptible

BEDSIDE PK/PD APPLICATION: CONVENTIONAL AMINOGLYCOSIDES

Gentamicin:

C = Dose/Vd C = (2 mg/kg*70 kg)/ (0.3 L/kg*70 kg) C = 6.7 mg/L

Amikacin:

- C = Dose/Vd
- C = (7.5 mg/kg*70 kg)/ (0.3 L/kg*70 kg)
- C = 25 mg/L

BEDSIDE PK/PD APPLICATION: CONVENTIONAL AMINOGLYCOSIDES

Gentamicin:

C = Dose/Vd C = (2 mg/kg*70 kg)/ (0.3 L/kg*70 kg) C = 6.7 mg/L

Cmax:MIC = 6.7/4 = 1.7 Not at goal

Amikacin:

C = Dose/Vd

Cmax:MIC = 25/4 = 6.25 Not at goal

BEDSIDE PK/PD APPLICATION: EXTENDED INTERVAL AMINOGLYCOSIDES

Gentamicin:

C = Dose/Vd C = (7 mg/kg*70 kg)/ (0.3 L/kg*70 kg) C = 23.3 mg/L

Amikacin:

- C = Dose/Vd
- C = (15 mg/kg*70 kg)/ (0.3 L/kg*70 kg)
- C = 50 mg/L

BEDSIDE PK/PD APPLICATION: EXTENDED INTERVAL AMINOGLYCOSIDES

Gentamicin:

C = Dose/Vd C = (7 mg/kg*70 kg)/ (0.3 L/kg*70 kg) C = 23.3 mg/L

Cmax:MIC = 23.3/4 = 5.8 Still not at goal!

Amikacin:

C = Dose/Vd

C = (15 mg/kg*70 kg)/ (0.3 L/kg*70 kg)

Cmax:MIC = 50/4 = 12.5 At goal!

CASE 3

- 65 y/o IVDU with Pseudomonas aeruginosa bacteremia from presumed <u>pulmonary</u> source
- Dosing weight = 70 kg
- CrCl = 90 mL/min
- Allergies: NKDA
- Team would like to know which cephalosporin they should use

Drug	MIC	Interpretation
Aztreonam	4	Susceptible
Ceftazidime	8	Susceptible
Cefepime	8	Susceptible
Meropenem	8	Resistant
Piperacillin- tazobactam	16	Susceptible
Amikacin	4	Susceptible
Gentamicin	4	Susceptible
Levofloxacin	Ι	Susceptible

BEDSIDE PK/PD APPLICATION: BETA-LACTAMS

- Ceftazidime vs Cefepime?
- MIC = 4 for both, Breakpoint \leq 8 for both
- Adequate T > MIC?
- Population-based PK parameters found in Sanford Guide
- Pulmonary penetration per literature ~20-30% Ceftazidime vs 100% Cefepime

Drug	Dose	Peak serum level (mcg/mL)	Protein binding (%)	Average serum half- life (hrs)
Ceftazidime	l g	69	<10	2
Cefepime	2 g	164	20	2

Turnridge JD. Clin Infect Dis. 1998;27:10-22 The Sanford Guide to Antimicrobial Therapy 2019. 49th ed. Antimicrobial Therapy, Inc, Sperryville, VA; 2019

63

<u>Ceftazidime 2 g iv q8h:</u>

Cefepime 2 g iv q8h:

69

Scheetz MH, et al. Am J Health-Syst Pharm 2006;63:1346-60 72
ANTIMICROBIAL STEWARDSHIP

- "Coordinated interventions designed to improve and measure the appropriate use of antimicrobial agents by promoting the selection of the optimal antimicrobial drug regimen including dosing, duration of therapy, and route of administration"
- Goal is to achieve best clinical outcomes while minimizing toxicity, limiting selective pressure on bacterial populations that drives emergence of antimicrobial resistance

PHARMACIST'S ROLE IN ANTIMICROBIAL STEWARDSHIP

WHICH OF THE FOLLOWING DEMONSTRATES AN EXAMPLE OF A PHARMACIST PERFORMING ANTIMICROBIAL STEWARDSHIP?

- A. Pharmacist rounding with the intensive care unit team recommends extended infusion piperacillin-tazobactam for an organism with an elevated minimum inhibitory concentration
- B. Upon profile review, pharmacist notices that a patient has been on levofloxacin for 15 days for a urinary tract infection and contacts the physician to consider discontinuation
- C. Pharmacist recommending a switch from intravenous to oral trimethoprim/sulfamethoxazole
- D. All of the above

SUMMARY

- Selection of appropriate antimicrobial therapy is a complex process, requiring consideration of bug, drug, and patient
 - Cannot just pick "S" or the lowest MIC
- Pharmacists play a critical role in considering all the factors and optimizing drug therapy, especially focusing on PK/PD and antimicrobial stewardship

ID ABC'S: ANTIBIOTICS, BACTERIA, AND CORE CONCEPTS

ANGELA LOO, PHARM.D., BCPS-AQ ID, BCIDP NEWYORK-PRESBYTERIAN/WEILL CORNELL MEDICAL CENTER JANUARY 8, 2020