Novel use of non-opioids for safe and effective acute pain management

DR. BILLY SIN, PHARM.D., MBA, BCPS ASSISTANT DIRECTOR OF PHARMACY MOUNT SINAI QUEENS LONG ISLAND CITY, NEW YORK ADJUNCT ASSISTANT PROFESSOR OF PHARMACY PRACTICE LIU PHARMACY (ARNOLD & MARIE SCHWARTZ COLLEGE OF PHARMACY) BROOKLYN, NEW YORK

Objectives

1. List the principles for the use non-opioids for acute pain management

2. Discuss the advantages and disadvantages of various non-opioid agents

3. Identify supporting evidence for use of non-opioid alternatives

4. Describe the implementation of a practice centered on the use of non-opioids

Poll

At my institution, the pharmacy department is actively involved in mitigating the use of opioids by working with interdisciplinary personnel (ie: nurses, doctors) on pain rounds or stewardship teams.

A. True

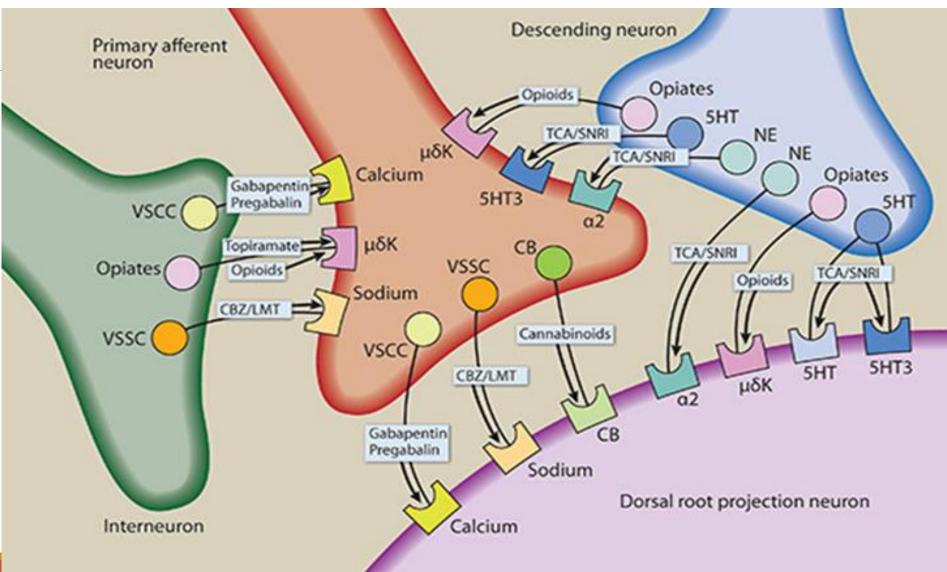
B. False

Principles for use of non-opioids

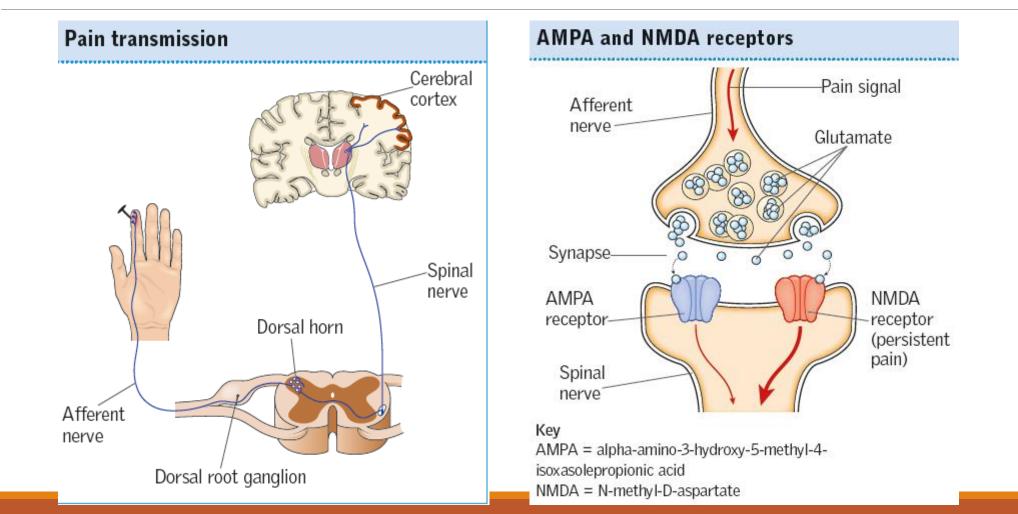
- Develop framework
 - Aim: Bed-side patient care
 - Implement process & procedure
 - Provide <u>continuous</u> education
 - Enhance the pharmacist-provider-patient relationship
- Identify & determine disease state
 - Targeted use of pharmacotherapy vs. pathophysiology
- Identify options
 - Channels, Enzymes, Receptors-Targeted Analgesia (CERTA)
 - Multimodal and holistic pain management

CERTA (Multimodal) approach¹

<u>C</u>hannels:


- Sodium (Lidocaine)
- Calcium (Gabapentin)

<u>Enzymes</u>:


• COX 1,2,3 (NSAIDS)

<u>R</u>eceptors:

- MOP/DOP/KOP (Opioids)
- NMDA (Ketamine)
- GABA (Gabapentin/Sodium Valproate)
- 5HT₁₋₄ (Haloperidol/Metoclopramide)
- \circ D₁₋₂ (Haloperidol)

Pain transmission via NMDA receptor²

Ketamine²⁻⁴

- Therapeutic category
 - N-methyl D-Aspartate (NMDA) receptor antagonist
 - Variety of effects
 - Respiratory system
 - Bronchodilation
 - Cardiovascular system
 - Increase in cardiac output, blood pressure, heart rate
 - Central nervous system
 - Analgesia
 - Anesthesia
 - Emergence phenomenon
 - Dissociation

Pharmacokinetics²

Onset/Duration	Distribution	Metabolism	Elimination
Onset:	Vd= 2.4L/kg	Hepatic	91% urine
IV: within 30			
seconds	T _{1/2} = Alpha: 10-		
IM: within 10-15	15 minutes;		
mins	Beta: 2.5 hours		
Duration:			
IV (anesthesia):	27% protein		
5-10mins	bound		

The Journal of Emergency Medicine, Vol. 52, No. 5, pp. 601–608, 2017 © 2017 Elsevier Inc. All rights reserved. 0736-4679/\$ - see front matter

$O_{\text{RIGINAL}} C_{\text{ONTRIBUTION}}$

Low-dose Ketamine Improves Pain Relief in Patients Receiving Intravenous Opioids

0.3mg/kg/dose IV^{rd,}

Francesca L. Beaudoin, MD, MS, Charlie Lin, Wentao Guan, MS, and Roland C. Merchant, MD, MPH, ScD

Abstract

Objectives: Low-dose ketamine has been used perioperatively for pain control and may be a useful adjunct to intravenous (IV) opioids in the control of acute pain in the emergency department (ED). The aim of this study was to determine the effectiveness of low-dose ketamine as an adjunct to morphine versus standard care with morphine alone for the treatment of acute moderate to severe pain among ED patients.

The objective of our study was to evaluate ketamine in subdissociative doses as an adjunct for acute pain in the ED.

□ Keywords—acute pain; analgesia; subdissociative dose; ketamine

Administration

TABLE 6. Summary of ASRA/AAPM Recommendations for Subanesthetic Ketamine

OP	Recommendation Category	Recommendation	
C I	Indications for use	 Perioperative use in surgery with moderate to severe postoperative pain Perioperative use in patients with opioid tolerance As analgesic adjunct in opioid-tolerant patients with sickle cell crisis As analgesic adjunct in patients with OSA 	etamine nerican e, the nerican
	Dosing range	Bolus: up to 0.35 mg/kg Infusion: up to 1 mg/kg per hour	lencan
Eric Aja	Relative contraindications	 Poorly controlled cardiovascular disease Pregnancy, psychosis Severe hepatic disease, ie, cirrhosis (avoid), moderate hepatic disease (caution) Elevated intracranial pressure, elevated intraocular pressure 	urley, MD, PhD,‡ I. Davis, MD,††
Back acute 1 of trea individ	Personnel	 Supervising clinician: a physician experienced with ketamine (anesthesiologist, critical care physician, pain physician, emergency medicine physician) who is ACLS certified and trained in administering moderate sedation Administering clinician: registered nurse or physician assistant who has completed formal training in safe administration of moderate sedation and is ACLS certified 	he committee then re- committee chair were After preliminary con- e further revisions via

Administration¹⁻⁴

Clinical consideration: IVP or IVPB?

Am J Emerg Med. 2017 Aug;35(8):1095-1100. doi: 10.1016/j.ajem.2017.03.004. Epub 2017 Mar 3.

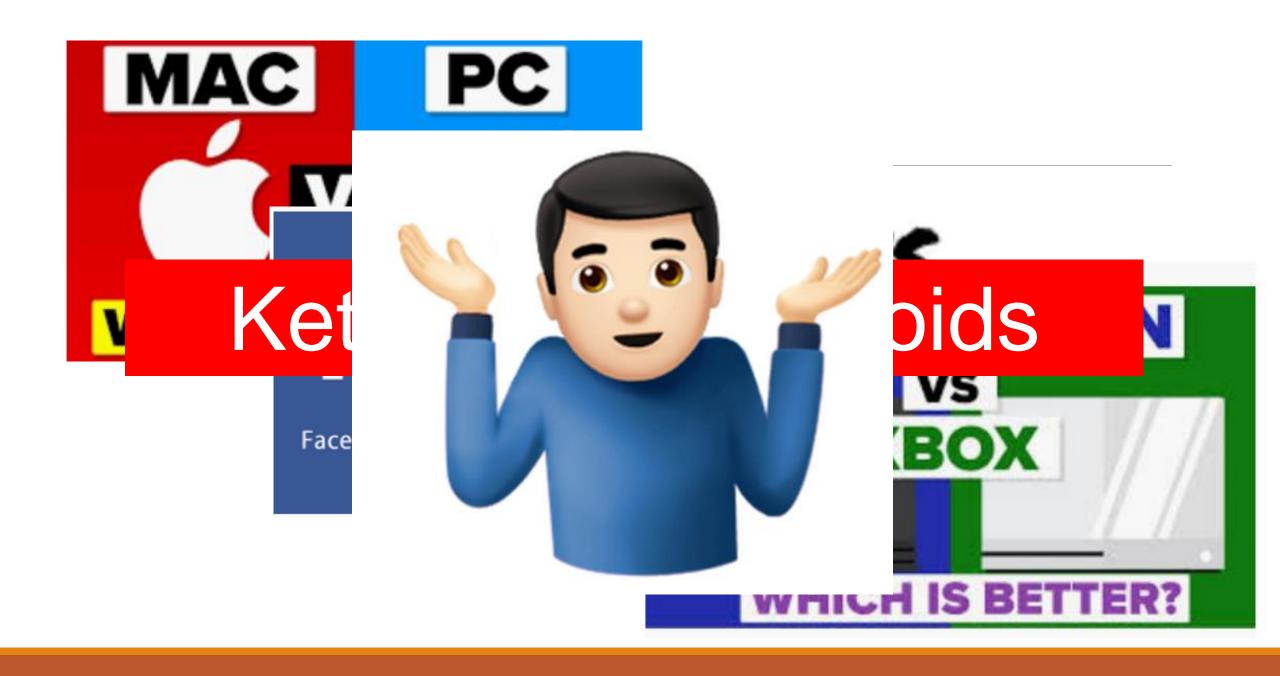
A prospective randomized, double-dummy trial comparing IV push low dose ketamine to short infusion of low dose ketamine for treatment of pain in the ED.

Motov S¹, Mai M², Pushkar I², Likourezos A², Drapkin J², Yasavolian M², Brady J³, Homel P⁴, Fromm C².

Author information

Abstract

STUDY OBJECTIVE: Compare adverse effects and analgesic efficacy of low-dose ketamine for acute pain in the ED administered either by single intravenous push (IVP) or short infusion (SI).


METHODS: Patients 18-65, presenting to ED with acute abdominal, flank, or musculoskeletal pain with initial pain score≥5, were randomized to ketamine 0.3mg/kg by either IVP or SI with placebo double-dummy. Adverse effects were evaluated by Side Effects Rating Scale for Dissociative Anesthetics (SERSDA) and Richmond Agitation-Sedation Scale (RASS) at 5, 15, 30, 60, 90, and 120min post-administration; analgesic efficacy was evaluated by Numerical Rating Scale (NRS).

RESULTS: 48 patients enrolled in the study. IVP group had higher overall rates of feeling of unreality on SERSDA scale: 92% versus 54% (difference 37.5%; p=0.008; 95% CI 9.3-59.5%). At 5min median severity of feeling of unreality was 3.0 for IVP versus 0.0 for SI (p=0.001). IVP also showed greater rates of sedation on RASS scale at 5min: median RASS -2.0 versus 0.0 (p=0.01). Decrease in mean pain scores from baseline to 15min was similar across groups: 5.2±3.53 (95% CI 3.7-6.7) for IVP; 5.75±3.48 (95% CI 4.3-7.2) for SI. There were no statistically significant differences with respect to changes in vital signs and need for rescue medication.

CONCLUSION: Low-dose ketamine given as a short infusion is associated with significantly lower rates of feeling of unreality and sedation with no difference in analgesic efficacy in comparison to intravenous push.

Copyright © 2017 Elsevier Inc. All rights reserved.

KEYWORDS: Analgesia; Emergency department; Infusion; Ketamine

ORIGINAL RESEARCH

Comparison of Intravenous Ketamine with Morphine in Pa Bones Fractures: a Double Blind Randomized Clini

> Saeed Majidinejad, Mehrdad Esmailian, Mehrdad Emadi* Department of Emergency Medicine, Isfahan University of Medical Sciences, Ist

Abstract

Introduction: The selective medication for pain control in many clinical situations is m tions prevent its widespread use. Ketamine has been introduced as an alternative for m

Accepted Manuscript

Intravenous subdissociative-dose ketamine versus morphine for acute geriatric pain in the Emergency Department: A randomized controlled trial Compariso Intravenous Subdissociative-Dose Ketamine Versus Morphine for Analgesia in the Emergency Department: A Randomized

MD

Randomized Controlled Feasibility Trial of Intranasal Ketamine Compared to Intranasal Fentanyl for Analgesia in Children with Suspected Extremity Fractures

Stacy L. Reynolds, MD, Kathleen K. Bryant, MD, Jonathan R. Studnek, PhD, Melanie Hogg, Connell Dunn, Megan A. Templin, MS, Charity G. Moore, PhD, MSPH, James R. Young, MD, Katherine Rivera Walker, BSN, and Michael S. Runyon, MD, MPH A related article appears on page 1511.

ABSTRACT

Objectives: We compared the tolerability and efficacy of intranasal subdissociative ketamine to intranasal fentanyl for analgesia of children with acute traumatic pain and investigated the feasibility of a larger noninferiority trial that could investigate the potential opioid-sparing effects of intranasal ketamine.

in patients with renal colic×

Sergey Motov, Stefan Mann, Jefferson Drapkin, Antonios Likourezos, Elizabeth Yetter, Jason Brac Christian Fromm, John Marshall Mohammad Reza Farnia, MD^a, Alireza Jalali, MD^b, Elnaz Vahidi, MD^c, Mehdi Momeni, MD^c, Javad Seyedhosseini, MD^c, Morteza Saeedi, MD^{c,*}

^a Kermanshah University of Medical Sciences, Imam Reza Hospital, Emergency Medicine Department, Kermanshah, Iran

^b Tehran University of Medical Sciences, Shariati Hospital, Emergency Medicine Department, Tehran, Iran

^c Emergency Medicine Research Center, Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

First author year, country	Sample size	Age range	Chief complaint	Intervention	Comparison	Measured outcome	Result	Conclusion
Majidinejad 2014, Iran [7]	n=126	18-55 years	Fractures of long bones	IV ketamine 0.5 mg/kg (n=63)	IV morphine 0.1 mg/kg (n=63)	Primary: Mean severity of pain before admin of medications and 10 minutes after	Before administration: ketamine 8.9±0.8 vs. morphine: 8.8±0.8 (p=0.32) After administration: ketamine 2.7 ± 1.8 vs. IV morphine: 2.4±1.5 (p=0.28)	No significant difference (p>0.05)
Motov 2015, United States [8]	n=90	18-55 years	acute abdominal, flank, back, or musculoskeletal pain and pain score of 5 or more on a 11-point NRS	IV ketamine 0.3 mg/kg in 10 ml of NS (n=45)	IV morphine 0.1 mg/kg in 10 ml of NS (n=45)	Primary: Mean NRS pain scores at 30 minutes.	ketamine: 4.1 ± 3.2 vs morphine: 3.9 ± 3.1 (mean difference: 0.2 [95% CI: -1.19 to 1.46])	No significant difference (p>0.05)
Motov 2018, United States [9]	n=60	≥65 years	acute abdominal, flank, back, or musculoskeletal pain and pain score of 5 or more on a 11-point NRS	IV ketamine 0.3 mg/kg in 100 ml of NS (n=30)	IV morphine 0.1 mg/kg in 100 ml of NS (n=30)	Primary: Mean NRS pain scores at 30 minutes.	ketamine: 4.2±3.4 vs morphine: 4.4±3.1 (mean difference: -0.2 [95% CI: -1.93 to 1.46])	No significant difference (p>0.05)
Reynolds 2017, United States [10]	n=87	4-17 years	suspected single-extremity fracture requiring analgesia with an initial pain score ≥ 4 (4-10 years) or an Adult pain score of at least 3 (11-17 years)	IN ketamine 1mg/kg (n=43)	IN fentanyl 1.5 μg/kg (n=44)	Primary: Mean pain scale score reduction in FPS-R at 30 mins after admin, mean± SD (mean difference [95% CI])	IN ketamine: 46±34 vs. IN fentanyl: 39±29 (7[-7 to 21])	No significant difference (p>0.05)

Clinical considerations

- Route
 - IV access?
 - Nausea/vomiting?
 - Readily available in the ED?
 - How long will it take for procurement?
- Safety (Avoid in...)
 - Hemodynamic instability (high blood pressure)
 - Baseline psychiatric condition
 - Altered mental status

Which would you choose?

KK is a 45 year old male who presents to the ED with acute abdominal pain. The physician would like to initiate ketamine but would like to avoid potential nausea/vomiting. She inquires with you, the pharmacist, on whether ketamine should be administered as a push versus slow infusion over 10-15 minutes. Your response is....

A. Push

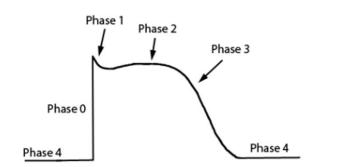
B. Infuse over 10-15 minutes

Lidocaine¹¹

Therapeutic category

• Class Ib amide antiarrhythmic

Mechanism of action


Blocks sodium channel Decrease conduction velocity

Adverse event profile

- Headache, dizziness, flushing, edema
- Twitching, seizure, arrhythmia

Availability

- 100mg pre-filled syringe
- 1%, 2% injection vial

Phases	Channels involved	Action		
0 (Rapid depolarization)	Sodium	Sodium influx, Rapid depolarization of atrial and ventricular tissue		
1 (Initial repolarization)	Potassium	Potassium efflux. Calcium starts to move into intracellular sp which causes a slower depolarization.		
2 (Plateau phase)	Calcium	Calcium influx into intracellular space continues		
3 (Repolarization)	Potassium	Active potassium efflux results in repolarization		
4 (Slow depolarization)	Sodium	Gradual depolarization, abrupt influx of sodium allows rapid depolarization		

Pharmacokinetics¹¹

Onset/Duration	Distribution	Metabolism	Elimination
Onset:	Vd= 0.7-2.7L/kg	Hepatic	Urine
45-90 seconds			
	T _{1/2} = 7-30		
Duration:	minutes		
10-20 minutes			
	60-80% protein		
	bound		

TOXICOLOGY/SYSTEMATIC REVIEW/META-ANALYSIS

Safety and Efficacy of Intravenous Lidocaine for Pain Management in the Emergency Department: A Systematic Review

Lucas Oliveira Le Silva: Kristin Scherber, PharmD: Daniel Cabrera, MD: Sergey Motoy, MD: Patricia, L. Erwin, MLS:

1-1.5mg/kg IV

Study objective: We evaluate the safety and efficacy of intravenous lidocaine in adult patients with acute and chronic pain who are undergoing pain management in the emergency department (ED).

suspicion for a gastrointestinal injury. On physical exami-

oid naïve. On physical examination, there was no midline tenderness along the spine, but moderate left-sided cervical paraspinal tenderness to palpation was noted. There was diffuse tenderness to palpation of the left arm, most profound at the distal third of the left clavicle. Range of motion was limited

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

lication included albs needed. Also, 7 days ignosed with a 3-mm l. He was prescribed every 4 to 6 hours for daily for passing of the

pain and tamsulosin 0.4 mg once daily for passing of the stone. On each day during the 7-day period, JA consumed 12 tablets of oxycodone/acetaminophen and 1 capsule of tamsulosin. No adjunctive analgesics or nonpharmacological therapies were used. Over the past 2 days, he had experienced increasing episodes of pain, nausea, and vomiting. JA had also noted small traces of blood in his vomit, raising

Billy Sin, PharmD, BCPS LIU Pharmacy (Arnold and Marie Schwartz College of Pharmacy), New York, NY, USA The Brooklyn Hospital Center, New York, NY, USA Muhammad Effendi, PharmD Candidate LIU Pharmacy (Arnold and Marie Schwartz College of Pharmacy), New York, NY, USA Christopher Bjork, MD

Sheena Punnapuza, MD The Brooklyn Hospital Center, Brooklyn, NY, USA

References

Emergency. 2017; 5 (1): e82 http://dx.doi.org/10.22037/emergency.v5i1.18894

ORIGINAL RESEARCH

Intravenous Lidocaine Compared to Fentanyl in Renal Colic Pain Management; a Randomized Clinical Trial

Hassan Motamed¹, Mohammadreza Maleki Verki^{1*}

1. Emergency Medicine Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Received: September 2017,

Abstract: Introduction: Using alpha blockers such as intravenous (IV) acute pain. Therefore, the current study was designed with in comparison to W fontanul in pain management of patients.

RESEARCH ARTICLE

Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department

Hassan Soleimanpour^{1*}, Kamaleddin Hassanzadeh², Hassan Vaezi¹, Samad EJ Golzari^{3,4}, Robab Mehdizadeh Esfanjani⁵ and Maryam Soleimanpour⁶

Abstract

Background: Despite the fact that numerous medications have been introduced to treat renal colic, none has been proven to relieve the pain rapidly and thoroughly. In this study, we aimed at comparing the effects of intravenous lidocaine versus intravenous morphine in patients suffering from renal colic.

Methods: In a prospective randomized double-blind clinical trial performed in the emergency department of Imam

Open Access

First author year, country	Sample size	Age range	Chief complaint	Intervention	Comparison	Measured outcome	Result	Conclusion
Motamed 2017, Iran [12]	n=90	18-65 years	Renal colic	IV lidocaine 1.5 mg/kg (n=45)	IV fentanyl 1.5 μg/kg (n=45)	Primary: 100 mm VAS score at designated time intervals following AOI	At 30 min: Mild pain lidocaine: 22 (48.9%) vs. fentanyl: 25 (55.6%) Moderate pain lidocaine: 10 (22.2%%) vs. fentanyl: 7 (15.6%) Severe pain lidocaine: 13 (28.9%) vs. fentanyl: 13 (28.9%)	No significant difference (p>0.05)
Soleimanpour 2012, Iran [13]	n=240	18-65 years	Pain radiating to genitalia and groin, and tenderness in costovertebral angle	IV lidocaine solution 1.5 mg/kg (n=120)	IV morphine 0.1 mg/kg (n=120)	Primary: 11 point mean NRS score at 5 min AOI	IV lidocaine: 3.18 <u>+</u> 2.2 vs. IV morphine: 4.45 <u>+</u> 2.1	Patient who received IV lidocaine had more pain relief

Clinical considerations

- Product to use
 - Need to be preservative free
- Data describes use of IV
 - No mention of IVP or IVPB (IVPB preferred)
 - Infuse with fluids to avoid potential adverse events
 - Literature does not mention cardiac monitor, but recommended
- Safety (Avoid in...)
 - Hemodynamic instability (electrolyte imbalance)
 - History of arrhythmia

Acetaminophen (IV)

- Therapeutic category
 - Non-opioid analgesic
- Mechanism of action
 - Activation of descending serotonergic inhibitory pathways in CNS

Adverse event profile

- Nausea (34%), vomiting (15%)
- Rash (1-10%)
- Availability
 - 1g vial (\$48/vial)

Pharmacokinetics^{14,15}

Onset/Duration	Distribution	Metabolism	Elimination
Onset: 5-10 minutes	Vd= 0.7-1L/kg (high)	Hepatic, mainly via CYP2E1	Renal (<5% unchanged)
Duration: 4-6 hours	T _{1/2} = 2-3 hours		
	60-80% protein bound		

2	Academic Emergency								
N	Official Journal of the Society for Academic Emergency Medicine								
5	American Journal of Therapeu	tics 0, 1–8 (2016)							
Traum		PAIN MANAGEMENT/ORIGINAL RESEARCH	640						
Traum			649						
Publis	^{blis} Intravenous Paracetamol or Morphine for the Treatment of Ren								
Effic	Colic: A	Randomized, Placebo-Controlled Trial	ıte						
Lim									
	Firat Bektas, MD	From the Department of Emergency Medicine (Bektas, Eken, Karadeniz, Goksu, Cete) and							
Moh	Cenker Eken, MD	Department of Radiology (Cubuk), Akdeniz University Faculty of Medicine, Antalya, Turkey.							
	Ozgur Karadeniz, MD								
¹ Departn	Erkan Goksu, MD								
³ Departn ³ Departn	² Departn ³ Departn Metin Cubuk, MD								
*Correspo Tel: +98-9	Yildiray Cete, MD		Iran.						
Receiv									

Study objective: This randomized, placebo-controlled trial evaluates the analgesic efficacy and safety of intravenous single-dose paracetamol and morphine for the treatment of renal colic.

First aut year, cou		mple size	Age	Chief complaint	Intervention	Comparison	Measured outcome	Result	Conclusion
Bektas 20 Turkey [1	009, n=1 .7]		18-55 years	Renal colic and "mild" or greater pain intensity on a 4-point verbal rating scale or at least 20 mm on a 100-mm VAS	IV APAP 1 g in 100 mL NS (n=46)	IV morphine 0.1 mg/kg in 100 mL NS (n=51) IV 100 mL NS (n=49)	Primary: Median (IQR) change in VAS pain intensity score at 30 minutes	At 30 min IV morphine: 43 mm (7-73 mm) IV APAP: 41.5 mm (24-63 mm) Placebo: 24mm (5-45 mm)	NS (p>0.05)
Masoum 2014, Ira [18]			18-55 years	Renal colic	APAP 1g IV over 5-10 mins [n=54]	IV Morphine 0.1mg/kg over 5-10 mins [n=54]	Primary: 10-point VAS reduction at 30 min after meds (Mean <u>+</u> SD)	APAP: 4.7 <u>+</u> 2.3 vs. morphine 2.9 <u>+</u> 2.2, (p<0.05)	Significant reduction, favoring APAP
Azizkhar et al., 2013 ²¹	ni n=1		≥18 years	Renal colic	APAP 15mg/kg IV over 15 min [n=62]	IV Morphine 0.1mg/kg over 15 min [n=62]	Primary: 10-point VAS reduction at 30 min after meds (Mean <u>+</u> SD)	APAP: 2.4 <u>+</u> 3.3 ⁺ vs. morphine: 0.75 <u>+</u> 1.31 ⁺ , (p<0.05)	Significant reduction, favoring morphine
Shams Vahdati 2014, [2	n=6		18-55 years	Headache ≥ 40/100mm on VAS	APAP 1g IV over 10 mins [n=30]	IV Morphine 0.1mg/kg over 10 mins [n=30]	Primary: 100mm VAS at 15 min and 30 min after medication administration (Mean <u>+</u> SD)	15 min: APAP: 33.8mm <u>+</u> 22.5 (95%CI: 26-41) vs. morphine: 39.4mm <u>+</u> 27.2 (95%CI: 30-49) 30 min: APAP: 63.7mm <u>+</u> 21.7 (95%CI: 57-71) vs. morphine: 56.6mm <u>+</u> 24.4 (95%CI: 48-65)	NS (p>0.05)

Clinical considerations

- Cost vs. benefit?
- Already took something with Tylenol?
- Rate of infusion- over 15 minutes
- Safety (Avoid in...)
 - Hypersensitive
 - Liver dysfunction

Propofol²¹

- Proposed mechanisms
 - Enhance GABA activity at GABA-receptor complex (GABA-A)
 - Blocks NMDA-R ; decrease Ca influx
- Induce hypotension (up to 26%), bradycardia (3%)
 - Have epinephrine / atropine readily available
- Phenol derivative (low aqueous solubility)
 - Drug is in lipid vehicle, 1.1kcal/ml
 - Made from 10% soybean oil

Pharmacokinetics²¹

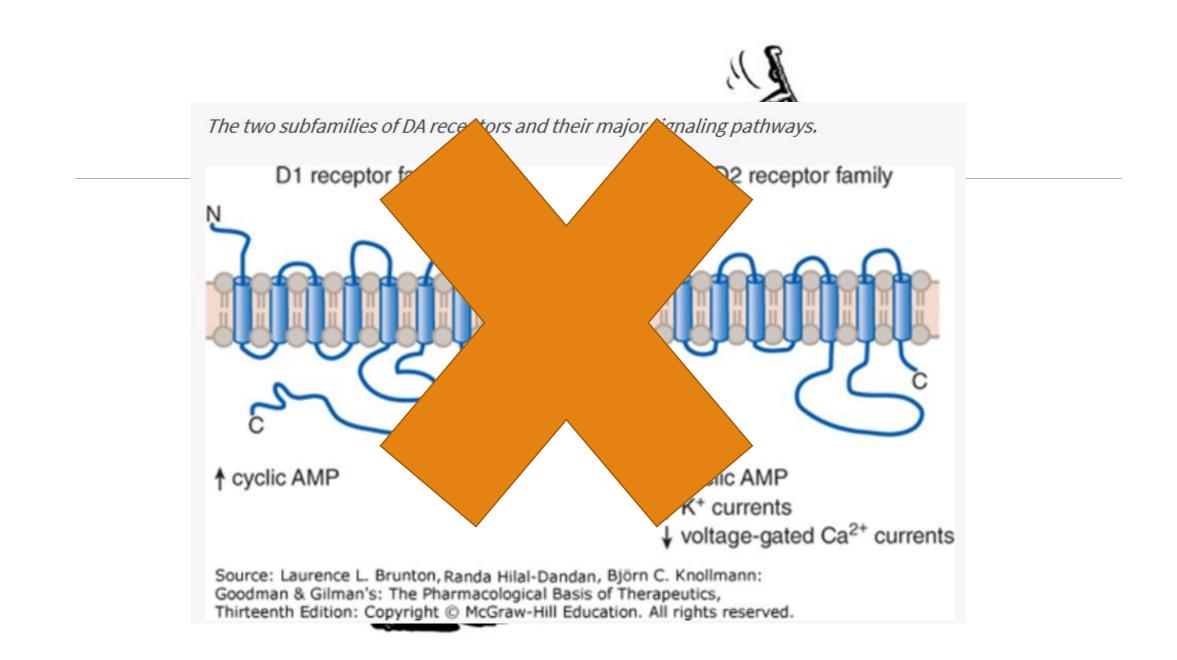
Onset/Duration	Distribution	Metabolism	Elimination
Onset: 9-50 seconds	Vd= 2-10L/kg (high)	Hepatic, mainly via CYP2E1	Renal
Duration: 3-10 minutes	T _{1/2} = initial: 40 minutes. terminal: 4-7 hours		
	97-99% protein bound		

Propofol: A New Treatment Strategy for Refractory Migraine Headache

Jacqueline Drummond-Lewis, MD, and Corey Scher, MD

Anesthesiology Department, Tulane University Health Science Center, New Orleans, Louisiana

ABSTRACT


the medical literature describing the use of propofol for migraine treatment. Dosing regimens are not clear, and mechanisms of action to terminate or markedly curtail ongoing intractable headaches are not described.

This case report, of two hospitalized patients with refractory migraine, increases the existing literature on the use of propofol therapy in migraine headache. In the first case, three different scenarios and dosages are described in the same patient. In the second case, the use of different dosages of propofol is described. A self-reported scale was employed by the patients to determine the efficacy of propofol therapy. In the first case, the patient's self-reported migraine score was an average of 100/100 and decreased to 10/100. In the second case, the patient's self-reported migraine score improved from 92/100 to 40/100. We propose that the improvements in the self-reported migraine score in both patients after propofol therapy may be due to GABA_A agonist effects and cerebral vasoconstriction.

Key Words. Propofol; Migraine Headache; GABAA Receptors; 5-HT Receptors

CASE REPORT

Case	Gende	Improvement of refractory migraine headache by propofol: case series	mptoms					
1	Male	Hassan Soleimanpour ^{1*} , Aliakbar Taheraghdam ² , Rouzbeh Rajaei Ghafouri ¹ , Ali Taghizadieh ¹ ,	tophobia					
2	Fema	Karim Marjany ³ and Maryam Soleimanpour ⁴						
3	Fema		to/phonophobia					
4	Fema	Abstract						
5	Fema	Background: Several studies have been conducted on managing migraine headaches and developing effective	to/phonophobia					
6	Male	medications for decreasing migraine-associated pain. Case presentation: Intravenous propofol was prescribed (10 mg every 5 min) for eight patients with intractable						
7	Fema	migraine headaches visiting the Emergency Department. The average pain score experienced by patients was						
8	Fema	recorded using the Visual Analogue Scale at the beginning of the treatment procedure and following the injection						
		for 30 min (5-min intervals). The patients' reported pain scores decreased significantly ($P = 0.01$) from 8.87 ± 0.83 (Cl: 8.17, 9.57) to 1.12 ± 0.83 (Cl: 0.43, 1.82) before and 30 min following the injection.						
		Discussion: It seems that in the treatment of intractable migraine headaches, GABAergic receptors, compared to the normal conditions, have a lower activity status.						
		Conclusion: Because of the high tendency of propofol to GABAergic receptors, it probably changes this physiological condition by activating the receptors, which results in a significant pain reduction.						
		Keywords: Propofol, Migraine headache, Visual analogue scale, Emergency department, GABAergic receptors	J					

Haloperidol^{24,25}

Therapeutic category

• 1st generation antipsychotic

Adverse event profile

• Extrapyramidal reaction (>10%), hyperkinesia, abdominal pain

Availability

• 5mg/ml (lactate injection)

The Journal of Emergency Medicine, Vol. ■, No. ■, pp. 1–9, 2015 Copyright © 2015 Elsevier Inc. Printed in the USA. All rights reserved 0736-4679/\$ - see front matter

A RANDOMIZED CONTROLLED TRIAL OF INTRAVENOUS HALOPERIDOL VS. INTRAVENOUS METOCLOPRAMIDE FOR ACUTE MIGRAINE THERAPY IN THE EMERGENCY DEPARTMENT

http://dx.doi.org/10.1016/j.jemermed.2015.03.023

Matthew E. Gaffigan, MD,* David I. Bruner, MD,† Courtney Wason, BS,* Amy Pritchard, DO,‡ and Kenneth Frumkin, MD, PHD*

*Naval Medical Center Portsmouth, Portsmouth, Virginia, †Naval Medical Center San Diego, San Diego, California, and ‡Naval Hospital Camp Pendleton, Camp Pendleton, California Reprint Address: David I. Bruner, мр, Naval Medical Center San Diego, 8022 Paseo del Ocaso, La Jolla, CA 92037

ORIGINAL CONTRIBUTION

CME Randomized Controlled Double-blind Trial Comparing Haloperidol Combined With Conventional Therapy to Conventional Therapy Alone in Patients With Symptomatic Gastroparesis

Carlos J. Roldan, MD, Kimberly A. Chambers, MD, Linda Paniagua, MD, Sonali Patel, MD, Marylou Cardenas-Turanzas, MD, DrPH, and Yashwant Chathampally, MD

ABSTRACT

Objective: Gastroparesis is a debilitating condition that causes nausea, vomiting, and abdominal pain.

	rst autho ar, count	•	e Age	Chief complaint	Intervention	Comparison	Measured outcome	Result	Conclusion
20 Ur	ffigan 15, iited	n=146 able 4. Si	18-50 years	Migraine with at least (2 of following) 1. Unilateral location	IV haloperidol 5mg over 2 mins (n=31)	IV metoclopramide	Primary: Mean pain relief from baseline measured using a	Mean reduction from baseline to 80mins:	Significant reduction from
Sta	ates [2]				dol (n = 31)		Metoc	lopramide (n = 33)	to
	5	Side Effec	t	Baseline (Time 0) (%)		oed AFTER eridol (%)	Baseline (Time 0) (%	6) Develope Metoclopr	
	Sleepiness* Nausea Restlessness Chest pain			25 (81)* 22 (71) 10 (32) 0 (0)	5 (16) 0 (0) 10 (32) 2 (6)		20 (61) 1 (12)
20 Ur	ldan 17, iited ates [28]	n=33	≥18 years	Abdominal pain with nausea and vomiting attributed to gastroparesis	IV haloperidol 5mg (n=15)	IV placebo (n=18)	Primary: Mean reduction in 10-point VAS at 60 min	haloperidol: 5.37 vs. placebo: 1.11 (p=0.11)	Significant reduction, favoring haloperidol NS difference in
					With standard (hydromorphor	ne,			standard of care received (p>0.05) No ADR in
					metoclopramid famotidine, par magnesium, lor promethazine)	ntoprazole, razepam,			haloperidol group *Study did not meet power

Test your knowledge

AK is a 24 yo female with a history of migraine. Today, she presents to the ED with severe headache, and is sensitive to light and sound. Her vitals signs include: HR: 100, BP: 122/92, RR: 14, O_2 sat: 98% on room air. Two hours prior to visiting the ED, she self-administered APAP 650mg with no relief. In the ED, she has been prescribed ketorolac 30mg IV, dexamethasone 10mg IV, and metoclopramide 10mg IV. Despite these therapies, there has not been any improvements. Based on available literature, which of the following intravenous agents is the best recommendation for AK?

- A. Acetaminophen
- B. Ketamine
- C. Propofol

Systematic approach to implementation

- 1. Identify interdisciplinary champions (6 months before "go-live")
- Build trust: "Prove it to me", start with one case
- Gaining Support
- "What's in it for them": improve outcomes, publications, financial incentive for institution?
- 2. Review current practices (5 months before "go-live")
- "What are we doing today"
 - Avoid: "We have been doing this for years", "This is the way that has been done"
- What medication is used (why?)
- Identify outcomes for improvement
- "Are there gaps in: process, IT (CPOE), practice norms, availability/shortages?

Systematic approach to implementation

- 3. Identify the role of the pharmacist (5 months before "go-live")
- Aim: Leading expert in pharmacotherapy use
 - Education, education, education
 - Design patient specific pharmacotherapeutic care plan
 - Bedside monitoring & counseling
 - Member of the providing team
- 4. Identify tools available to achieve goal (5 months before "go-live")
 - CPOE & Smart pumps
 - Order sets/pathways
 - Therapy specific monitoring parameters
 - Dosages, warnings (hard-stop, soft-stop), concentrations

Systematic approach to implementation

5. Meet with interdisciplinary personnel & executive leadership (4 months before "go-live")

- Justify practice model & campaign for resources
- Implement IT changes to CPOE/smart pumps/order sets
- Arrange & coordinate inventory
- Test-run (1 month before go-live)
- 6. Data collection (suggested duration: 3 months)
- Obtain data to determine impact of practice
- "Manage up" patient stories and experiences
- Advertise practice in the community

Summary

1. Principles for the use non-opioids include: providing bedside patient care, continuous education, and recommending variety of pharmacologic options

2. Utilize the advantages and avoid disadvantages of each agent

3. Emerging literature supporting the use of non-opioids are available

4. Implementation of a medication use policy involve phases of planning, implementing, and monitoring

References

1. Motov SM, Nelson LS. Advanced concepts and controversies in emergency department pain management. Anesthesiol Clin. 2016;34(2):271-85.

2. Chumbley G. Use of ketamine in uncontrolled acute and procedural pain. Nursing Standard. 2010;25(15-17):35-7

3. Ketamine. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed December 21, 2018.

4. Sin B, Ternas T, Motov S. The use of subdissociative-dose ketamine for acute pain in the emergency department. Acad Emerg Med. 2015;22(3):251-7.

5. Sleigh J, Harvey M, Voss L, Denny B. Ketamine- more mechanisms of action than just NMDA blockade. Trends in Anaesthesia and Critcal Care. 2014;4:76-81.

6. Gurnani A, Sharma PK, Rautela RS, Bhattacharya A. Analgesia for acute musculoskeletal trauma: low-dose subcutaneous infusion of ketamine. Anaesth Intensive Care. 1996;24(1):32-

7. Majidinejad S, Esmailian E, Emadi M: Comparison of intravenous ketamine with morphine in pain relief of long bones fractures: a double blind randomized clinical trial. Emerg (Tehran). 2014;2(2):77-80.

8. Motov S, Rockoff B, Cohen V, Pushkar I, Likourezos A, McKay C, et al: Intravenous subdissociative-dose ketamine versus morphine for analgesia in the emergency department. Ann Emerg Med. 2015; 66(3):222-229,

9. Motov S, Mann S, Drapkin J, Butt M, Likourezos A, Yetter E, et al: Intravenous subdissociative-dose ketamine versus morphine for acute geriatric pain in the emergency department: a randomized controlled trial. Am J Emerg Med. 2018; pii:S0735-6757:30407-8.

10. Reynolds SL, Bryant K, Studnek J, Hogg M, Dunn C, Templin MA, et al: Randomized controlled feasibility trial of intranasal ketamine compared to intranasal fentanyl for analgesia in children with suspected extremity fractures. Soc Acad Emerg Med 2017;24(12):1430-1440.

11. Lidocaine. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed December 21, 2018.

12. Motamed H, Maleki Verki M: Intravenous lidocaine compared to fentanyl in renal colic pain management; a randomized clinical trial. Emerg (Tehran) 5(1):e82, 2017.

13. Soleimanpour H, Hassanzadeh K, Vaezi H, Golzari SE, Esfanjani RM, Soleimanpour M: Effectiveness of intravenous lidocaine versus intravenous morphine for patients with renal colic in the emergency department. BMC Urol. 2012;12:13.

14. Acetaminophen. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed December 21, 2018.

15. Ofirmev (Acetaminophen) [package insert]. Hazelwood, MO: Mallinckrodt; 2018.

16. Sinatra RA, Jahr JS, Reynolds LW, Viscusi ER, Groudine SB, Payen-Champenois C. Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery. Anesthesiology. 2005;102(4):822-31.

17. Bektas F, Eken C, Karadeniz O, Goksu E, Cubuk M, Cete Y: Intravenous paracetamol or morphine for the treatment of renal colic: a randomized, placebo-controlled trial. Ann Emerg Med. 2009;54(4):568-74.

18. Masoumi K, Forouzan A, Asgari Darian A, Feli M, Barzegari H, Khavanin A. Comparison of clinical efficacy of intravenous acetaminophen with intravenous morphine in acute renal colic: a randomized, double-blind, controlled trial. Emerg Med Int. 2014;2014:571326.

References

19. Azizkhani R, Pourafzali SM, Baloochestani E, Masoumi B. Comparing the analgesic effect of intravenous acetaminophen and morphine on patients with renal colic pain referring to the emergency department: a randomized controlled trial. J Res Med Sci. 2013;18(9):772-6.

20. Shams Vahdati S, Morteza Baghi HR, Ghobadi J, Rajaei Ghafouri R, Habibollahi P. Comparison of paracetamol (Apotel[®]) and morphine in reducing post pure head trauma headache. Anesth Pain Med. 2014;21:e14903.

21. Propofol. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed December 21, 2018.

22. Drummond-Lewis J, Scher C. Propofol: a new treatment strategy for refractory migraine headache. Pain Med. 2002;3(4):366-9.

23. Soleimanpour H, Taheraghdam A, Ghafouri RR, Taghizadieh A, Marjany K, Soleimanpour M. Improvement of refractory migraine headache by propofol: case series. Int J Emerg Med. 2012;5(1):19.

24. Seidel S, Aigner M, Ossege M, Pernicka E, Wildner B, Sycha T. Antipsychotics for acute and chronic pain in adults. Cochrane Database Syst Rev. 2013;(8):CD004844.

25. Haloperidol. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed December 21, 2018.

26. Sibley DR, Hazelwood LA, Amara SG. Sibley D.R., Hazelwood L.A., Amara S.G. Sibley, David R., et al.5-Hydroxytryptamine (Serotonin) and Dopamine. In: Brunton LL, Hilal-Dandan R, Knollmann BC. Brunton L.L., Hilal-Dandan R, Knollmann B.C. Eds. Laurence L. Brunton, et al.eds. *Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e* New York, NY: McGraw-Hill; http://0-accesspharmacy.mhmedical.com.liucat.lib.liu.edu/content.aspx?bookid=2189§ionid=170105881. Accessed December 23, 2018.
27. Gaffigan ME, Bruner DI, Wason C, Pritchard A, Frumkin K. A Randomized Controlled Trial of Intravenous Haloperidol vs. intravenous metoclopramide for acute migraine therapy in the emergency department. J Emerg Med. 2015;49(3):326-34.

28. Roldan CJ, Chambers KA, Paniagua L, Patel S, Cardenas-Turanzas M, Chathampally Y. Randomized controlled double-blind trial comparing haloperidol combined with conventional therapy to conventional therapy alone in patients with symptomatic gastroparesis. Acad Emerg Med. 2017;24(11):1307-1314.

Future Correspondence

Billy Sin, PharmD, MBA, BCPS billy.sin@mountsinai.org