Common Mishaps and Pitfalls in the Inpatient Management of Diabetes

Caitlyn Cummings, PharmD, BCPS
Clinical Coordinator, Transitions of Care
Long Island Jewish Medical Center
9/18/19
Objectives

At the completion of this activity, pharmacists will be able to

• Identify an appropriate insulin conversion regimen for patients admitted to the inpatient setting
• Recognize appropriate insulin management strategies for common inpatient scenarios
• Discuss appropriate and inappropriate uses of patient devices (continuous glucose monitors and insulin pumps)
Objectives

At the completion of this activity, pharmacy technicians will be able to

• Describe how pharmacy technicians can play a role in medication reconciliation on admission
• Identify patients with diabetes who would benefit from pharmacy intervention
• Recognize patients wearing diabetes devices
Abbreviations

EMR: electronic medical record
AMS: altered mental status
T1DM: type 1 diabetes
T2DM: type 2 diabetes
Hrs: hours
PO: by mouth
TDD: total daily dose
qHS: every night at bedtime
mL: milliliter
BID: twice daily
D50W: dextrose 50% in water
IVP: intravenous push
kG: kilogram
BG: blood glucose
DKA: diabetic ketoacidosis
e.g.: for example

HHS: hyperosmolar hyperglycemic state
TID: three times a day
AC: before meals
dL: deciliter
ESRD: end-stage renal disease
HD: hemodialysis
s/p: status post
A&O: alert & oriented
POC: point of care
FS: fingerstick
CDE: certified diabetes educator
D5W: dextrose 5% in water
RN: registered nurse
SQ: subcutaneous
D10W: dextrose 10% in water
AKI: acute kidney injury
CKD: chronic kidney disease

EGD: esophagostroduodenoscopy
NPO: nothing by mouth
A1c: hemoglobin A1c
MRI: magnetic resonance imaging
CT scan: computerized tomography scan
FYI: for your information
IT: information technology
ICU: intensive care unit
ADA: American Diabetes Association
AACE: American Association of Clinical Endocrinologists
MD: medical doctor
OR: operating room
G: gram
A patient with diabetes is admitted to the hospital...

- Home pharmacy is closed
- Patient’s never been in EMR
- "I don’t know my home medications"
- "I take the gray insulin"
- "I ran out of medication"
- "I get samples from my physician"
- "I’m allergic to ___ insulin"
- They use multiple pharmacies
- Patient is unconscious/AMS
- Patient is poor historian

Schneider M. Confused Pharmacist [graphic]; 2019
Medication Reconciliation

• Who is doing medication reconciliations at your institutions?
 • Physicians
 • Residents
 • Mid-level providers
 • Nurses
 • Pharmacists
 • Pharmacy technicians
 • Pharmacy interns
 • Pharmacy residents

• Is medication reconciliation being confirmed with 2 or more sources?
 • Patient/family
 • Pharmacy
 • Actual medication containers
 • Previous admission or discharge
 • Medication list
 • Patient’s physician(s)

• Is there continuing education/updates for medication history providers regarding new medications?
Background: Medication Reconciliation

- Pharmacy team conducted medication reconciliation within 24 hrs of admission for patients followed by the Endocrinology service (74% of patients had diabetes).
- Pharmacist classified any difference between medication history and inpatient admission orders as an intended or unintended discrepancy.
- If the physician corrected an unintentional discrepancy, it was considered to be a medication error.

<table>
<thead>
<tr>
<th>Results</th>
<th>Patients with diabetes (N = 671)</th>
<th>Patients without diabetes (N = 233)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medication errors on admission</td>
<td>22.1% (n = 148)</td>
<td>12.0%</td>
<td>p < 0.005</td>
</tr>
<tr>
<td>Potentially serious medication errors*</td>
<td>33.8% (n = 50)</td>
<td>7.1%</td>
<td>p < 0.005</td>
</tr>
</tbody>
</table>

*Classified by consensus panel using National Coordinating Council for Medication Error Reporting and Prevention Index - Serious may cause harm or extend hospital stay.

Background: Medication Reconciliation

- Using the same pool of patients from previous slide, this study looked at medication errors on hospital admission in patients with Type 1 and Type 2 diabetes (N = 671)
- Prevalence of medication errors on admission
 - Patients with Type 1 Diabetes (n = 163) : 21.5%
 - Patients with Type 2 Diabetes (n = 508) : 22.2%
- After adjusting for age and number of treatments, patients with Type 1 diabetes had about a two-fold higher odds of having medication errors and potential serious errors on admission compared with those with Type 2 diabetes

Basic Rules of Thumb

After a medication reconciliation is completed for a patient, what should we think about before starting inpatient orders?

• Do they have Type 1 or Type 2 Diabetes (T1DM or T2DM)?
• Is the home regimen appropriate?
• Are they actually taking these documented doses?
• What is their PO status inpatient?
• Is their home diet uncontrolled?
• Does the patient need pharmacist counseling or intervention?

Never make assumptions
Insulin Conversion on Admission
Mishaps with Insulin Conversion on Admission

- **Hyperglycemia**
 - Withholding insulin
 - Too little insulin
 - Sliding scale only

- **Hypoglycemia**
 - No dose reduction
 - Too much insulin
 - Mixed insulin
 - Continue oral agents
Using a Home Insulin Regimen

<table>
<thead>
<tr>
<th>Calculate Total Daily Dose (TDD) of home insulin regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate to use 80% of regimen*</td>
</tr>
<tr>
<td>*unless hyperglycemia, then use 100% of TDD</td>
</tr>
<tr>
<td>Inpatient Regimen</td>
</tr>
<tr>
<td>50% Basal</td>
</tr>
<tr>
<td>50% Bolus (split between 3 meals)</td>
</tr>
</tbody>
</table>
Disclaimer

- The following conversions come from primary literature, as well as package inserts, Lexicomp®, Pharmacist Letter for outpatient conversions
- It is usually appropriate to dose reduce (~20%) while the patient is hospitalized (unless hyperglycemic)
Basal Insulins

Basal insulin should never be held in patients with T1DM

Withholding basal insulin can lead to DKA in T1DM

<table>
<thead>
<tr>
<th>Outpatient Regimen</th>
<th>Inpatient Conversion to Lantus® (insulin glargine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glargine</td>
<td>Basaglar® 100 units/mL → 1:1</td>
</tr>
<tr>
<td></td>
<td>Toujeo® 300 units/mL → use 80% TDD</td>
</tr>
<tr>
<td>Insulin detemir</td>
<td>Levemir® 100 units/mL → 1:1</td>
</tr>
<tr>
<td>Insulin degludec</td>
<td>Tresiba® 100 or 200 units/mL → 1:1</td>
</tr>
</tbody>
</table>

- E.g., Patient is on Toujeo® 40 units qHS at home → Lantus 32 units qHS inpatient
- Levemir® 10 units twice daily → Lantus® 20 units once daily

may need to dose reduce (to account for inpatient variability)

Lantus® [package insert]; 2018
Insulin glargine. Lexicomp; 2019
King AB. Diabetes Obes Metab. 2009;11(1):69-71
Pharmacist’s Letter; Feb 2017
Basal Insulins: Intermediate-acting (continued)

<table>
<thead>
<tr>
<th>Outpatient Regimen (NPH insulin)</th>
<th>Inpatient Conversion to Lantus® (insulin glargine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumuLIN® N 100 units/mL</td>
<td>Once daily NPH</td>
</tr>
<tr>
<td>NovoLin® N 100 units/mL</td>
<td>Twice daily NPH</td>
</tr>
</tbody>
</table>

- Twice daily NPH: Humulin® N 20 units **BID** → insulin glargine 32 units **qHS**
- NPH has variable pharmacokinetics (peak 4 – 12 hrs and duration 14 – 24 hrs)
- Dose reduction lessens chance of hypoglycemia

may need to dose reduce (to account for inpatient variability)
Rapid-Acting Insulins

<table>
<thead>
<tr>
<th>Outpatient Regimen</th>
<th>Inpatient Conversion to Humalog® (insulin lispro)</th>
<th>Inpatient Conversion to Novolog® (insulin aspart)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin glulisine</td>
<td>Apidra® 100 units/mL 1:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Insulin lispro</td>
<td>Admelog® 100 units/mL 1:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Humalog® 100 or 200 units/mL</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>Insulin aspart</td>
<td>Novolog® 100 units/mL 1:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Fiasp® 100 units/mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afrezza® inhaled insulin</td>
<td>1:1</td>
<td>1:1</td>
</tr>
</tbody>
</table>

- Make sure rapid-acting insulin is three times a day before meals plus corrective scale insulin.
Regular Insulin

<table>
<thead>
<tr>
<th>Outpatient Regimen (Regular Human Insulin)</th>
<th>Inpatient Conversion to Humalog® (insulin lispro)</th>
<th>Inpatient Conversion to Novolog® (insulin aspart)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humulin® R 100 units/mL</td>
<td>1:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Novolin® R 100 units/mL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FYI - Uses for regular insulin inpatient
 - Hyperkalemia: IV Push (± 25 grams dextrose or 50 mL D50W, if BG < 250 mG/mL)
 - Insulin drip (DKA or HHS): IVP bolus [0.1 units/kG] + infusion [0.1 units/kG/hr] or infusion without bolus [0.14 units/kG/hr]
Concentrated Regular Insulin (Humulin® R U-500)

- **Endocrine consult** (if your institution has inpatient team)
- Some institutions have policies in place and allow for inpatient Humulin® R U-500
 - Given 30 minutes prior to meals (two or three times daily)
 - Nurses **MUST** use U-500 insulin syringe with Humulin R U-500 vial
 - Otherwise, can give 5 TIMES the dose with U-100 syringe
- Conversion to basal/bolus is as follows:

\[
\text{U-500 TDD} \times 0.5-0.8 \rightarrow \text{U-100 TDD} \\
\]

- 50% basal
 - Consider twice daily dosing if ≥ 70 units
- 50% bolus
 - Divided between 3 bolus doses
Mixed Insulin

<table>
<thead>
<tr>
<th>Outpatient Regimen</th>
<th>Inpatient Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-acting + Intermediate-acting insulin</td>
<td>Humalog® Mix 75/25, Humalog® Mix 50/50, Novolog® Mix 70/30 Ryzodeg® 70/30 (usually BID dosing)</td>
</tr>
<tr>
<td>Short-acting + Intermediate-acting insulin</td>
<td>Novolin® 70/30, Humulin® 70/30 (usually BID dosing)</td>
</tr>
</tbody>
</table>

1. TDD home regimen x 0.8 ↓
 50% basal + 50% bolus

2. Use % of each component to convert inpatient e.g., 70% = basal, 30% = bolus

- Typically don’t use mixed insulin inpatient (higher risk of hypoglycemia (2 peaks), more variable pharmacokinetics, harder to adjust dose, patient’s appetite or PO status may change)
- Eg., Humulin® 70/30: 30 units before breakfast and 15 units before dinner

 TDD: 45 x 0.8 = 36 units → insulin glargine 18 units qHS + insulin lispro 6 units TID AC

US FDA; Sept 2017
Pharmacist’s Letter; Feb 2017
Summary

Upon medication reconciliation, you notice . . .

<table>
<thead>
<tr>
<th></th>
<th>Insulin-specific</th>
<th>Patient-specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inappropriate regimen</td>
<td>Uncontrolled sugars (hypo- or hyperglycemic)</td>
<td>Other comorbidities preventing optimal care (blind, tremors, alcoholism, dementia)</td>
</tr>
<tr>
<td>Confusing regimen</td>
<td>Patient is confused (medically or regarding diabetes)</td>
<td>Non-adherent/poor follow-up</td>
</tr>
<tr>
<td>Unaffordable regimen</td>
<td>Lost insurance (regimen no longer feasible)</td>
<td>Multiple readmissions</td>
</tr>
</tbody>
</table>

- Role of technician to raise concerns/questions/red flags to pharmacist
- Role of pharmacist to help with inpatient insulin conversion (first), education for diabetes and medications, and to assist with prior authorizations and affordable or alternative insulin for discharge
Question #1

What is the best inpatient insulin regimen based on the following information:

- Home medications: NovoLog® Mix 70/30 FlexPen® 20 units before breakfast and Basaglar® 20 units qHS (TDD: 40 units)
- Current BG 100 mG/dL
- Adherent to home regimen
- Food and nutrition: consistent carbohydrate diet ordered

A. Use the same home regimen inpatient: NovoLog® Mix 70/30 vial 20 units before breakfast and insulin glargine 20 units qHS

B. Use TDD x 0.8 and recommend insulin glargine 16 units qHS, insulin lispro 5 units TID AC, and low correction sliding scale

C. Insulin lispro 20 units TID AC and insulin glargine 20 units qHS

D. Corrective sliding scale insulin TID AC and qHS only
Question #1

What is the best inpatient insulin regimen based on the following information:

- Home medications: NovoLog® Mix 70/30 FlexPen® 20 units before breakfast and Basaglar® 20 units qHS (TDD: 40 units)
- Current BG 100 mG/dL
- Adherent to home regimen
- Food and nutrition: consistent carbohydrate diet ordered

A. Use the same home regimen inpatient: NovoLog® Mix 70/30 vial 20 units before breakfast and insulin glargine 20 units qHS

B. **Use TDD x 0.8 and recommend insulin glargine 16 units qHS, insulin lispro 5 units TID AC, and low correction sliding scale**

C. Insulin lispro 20 units TID AC and insulin glargine 20 units qHS

D. Corrective sliding scale insulin TID AC and qHS only
Appropriate insulin management strategies for common inpatient scenarios
Inpatient Hypoglycemia

33 yo M with brittle T1DM, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you do?

To be continued
Inpatient Hypoglycemia

- Level 1 hypoglycemia is blood sugar **less than 70 mG/dL**
- Level 2 hypoglycemia is < 54 mG/dL
 - Neuroglycopenic symptoms occur and immediate treatment required
- Level 3 hypoglycemia is a severe event with altered mental and/or physical functioning requiring assistance from another person
- Institutions should have a hypoglycemia **prevention and management protocol**

<table>
<thead>
<tr>
<th>Neuroglycopenic</th>
<th>Autonomic (neurogenic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>confusion</td>
<td>tremulousness</td>
</tr>
<tr>
<td>weakness or fatigue</td>
<td>palpitations</td>
</tr>
<tr>
<td>severe cognitive failure</td>
<td>anxiety</td>
</tr>
<tr>
<td>seizure</td>
<td>sweating</td>
</tr>
<tr>
<td>coma</td>
<td>hunger</td>
</tr>
</tbody>
</table>
ADULT HYPOGLYCEMIA PROCEDURE

Capillary BG < 70 mg/dL

Recheck capillary BG to confirm < 70 mg/dL

Unresponsive

Call Rapid Response

Obtain relevant orders or activate conditional orders

Responsive

Able to eat, swallow food/liquid

PO treatment (Rule of 15)
Give 15 grams of fast acting carbohydrate (15 grams glucose gel (1 tube) or 4 oz apple juice)
Recheck BG in 15 minutes

BG < 70 mg/dL
repeat PO treatment and recheck BG in 15 minutes

BG > 70 mg/dL
and the next meal is more than one hour away, give light snack (1 carbohydrate and 1 protein, e.g., 1/2 sandwich or cheese and crackers)

Recheck BG every 15 minutes until BG ≥ 100 mg/dL

Document episode in medical record

Responsive

NPO, uncooperative, unable to eat, swallow food/liquid

IF BG < 50 mg/dL
Give 25 Grams of D50 IVP STAT. Consider sending serum blood glucose to lab

IF NO IV access
Give Glucagon 1 mg IM, turn patient on side to avoid aspiration
Obtain IV access and start IV

IF BG 50-69 mg/dL
Give 12.5 Grams of D50 IVP STAT

Start D5W @ 100 mL/hr (call provider for order)
If pt on fluid restriction consider D10W at 50 mL/hr or D20W @ 25 mL/hr infuse via pump/Alaris pump (D20W may only be infused via a central line)

Check BG in 15 minutes

BG < 100 mg/dL
Give 25 Grams D50 IVP STAT
Repeat BG in 15 min

Notify provider of BG < 100 mg/dL and obtain further orders.

BG ≥ 100 mg/dL
Maintain D5W at 100 mL/hr

Call Provider to reevaluate plan of care

Determining WHY Hypoglycemia Happened

• If a patient experiences BG <70 mG/dL, their treatment regimen needs to be reviewed because it is a predictive factor for Level 3 hypoglycemic event

Here are some questions you should think about/ask in determining WHY hypoglycemia occurred:

• Was the pre-meal insulin given too soon and the meal was delayed?
• Was the pre-meal insulin given and the patient was taken to a test?
• Was an old fingerstick number used and too much correction insulin given?
• Was the pre-meal insulin given and the patient was nauseous or didn’t eat?
• Is the patient’s diet much more controlled inpatient, therefore they need less than their home insulin requirements?
• Is the patient on too much insulin or concomitant oral hypoglycemics?
• Was corticosteroid dose decreased suddenly?
Troubleshooting Hypoglycemia Scenarios

• Was the pre-meal insulin given too soon and the meal was delayed?
• Was the pre-meal insulin given and the patient was taken to a test?
• Was an old fingerstick number used and too much correction insulin given?

Educate team members that POC testing should be immediately before meals for most accurate FS reading. Pre-meal ± correction insulin should be given when the meal is in front of the patient and they plan on eating.
• Was the pre-meal insulin given and the patient was nauseous or didn’t eat?

If the patient has variable appetite, you can educate team members to wait to administer pre-meal insulin until the patient has started to eat or they eat > 50% of the meal. Always check with team/Endocrine depending on particular situation.
• Is the patient’s diet much more controlled inpatient, therefore they need less than their home insulin requirements?

Patient may need education from pharmacist, nutritionist, and/or CDE
• Is the patient on too much insulin or concomitant oral hypoglycemics?
• Was corticosteroid dose decreased suddenly?

Stop oral hypoglycemic agents inpatient and dose adjust insulin
Patients Who Are NPO

• Don’t hold basal insulin!!!
 – Use same dose if BG uncontrolled
 – Use about 80% of dose if BG well controlled

• Do hold standing pre-meal insulin (e.g., Humalog®)

• Don’t hold correction scale insulin (e.g., Humalog®)

• If they become hypoglycemia . . .
 • Remember, nothing by mouth!
 • Can give D50W or glucagon 1 mg x 1
 • Can start D5W drip

 • Prevention is key! Recommend reducing basal insulin by ~20% the night before planned procedures
 • If the patient’s BG is uncontrolled (≥250 mG/dL), can keep same dose of basal insulin
Question #2

33 yo M with brittle DM1, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you recommend?

A. Nothing - patient is asymptomatic
B. Correct with 15 grams carbohydrates, recheck fingerstick in 15 minutes
C. Correct with 1 ampule of D50W
D. Correct with 30 grams carbohydrates, recheck fingerstick in 1 hour
Question #2

33 yo M with brittle DM1, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you recommend?

A. Nothing - patient is asymptomatic
B. Correct with 15 grams carbohydrates, recheck fingerstick in 15 minutes
C. Correct with 1 ampule of D50W
D. Correct with 30 grams carbohydrates, recheck fingerstick in 1 hour
Follow-Up Question

Same patient - His blood glucose has been corrected, and it is 103 mG/dL fifteen minutes later. Insulin glargine (Lantus®) 8 Units SQ qHS is ordered. What would you recommend given his episode of hypoglycemia and T1DM?

A. Hold Lantus® - Patient was hypoglycemic, more insulin will cause further hypoglycemia plus it’s a small dose
B. Give full dose, the order is clear
C. Discuss with provider and RN that the patient has T1DM, so you would recommend giving ~20% dose reduction of Lantus tonight.
D. Give 50% of dose
Follow-Up Question

Same patient - His blood glucose has been corrected, and it is 103 mG/dL fifteen minutes later. Insulin glargine (Lantus®) 8 Units SQ qHS is ordered. What would you recommend given his episode of hypoglycemia and T1DM?

A. **Hold Lantus®** - Patient was hypoglycemic, more insulin will cause further hypoglycemia plus it’s a small dose
B. Give full dose, the order is clear
C. **Discuss with provider and RN that the patient has T1DM, so you would recommend giving ~20% dose reduction of Lantus tonight.**
D. Give 50% of dose
When to Start Insulin Inpatient (Non-Critically Ill)

- If a patient with **T2DM** is treated with **non-insulin therapy at home** (diet only, orals, non-insulin injectable) . . .

 Diet ordered
 - Use caution if continuing outpatient oral antidiabetic agents
 - POC before meals and at bedtime
 - Start sliding scale insulin
 - Not recommended to be used alone!
 - **If two or more BG > 180 mG/dL, add basal ± bolus insulin with corrective scale**
 - Premixed vs. basal/bolus insulin - similar glycemic control but **increased** hypoglycemia

 NPO
 - Discontinue outpatient non-insulin medications
 - POC q4-6h
 - Start sliding scale insulin
 - **If BG > 180 mG/dL, add basal insulin with corrective scale**

Starting insulin inpatient doesn’t necessarily mean a patient needs to go home on it

Diabetes Care. 2019 Jan; 42 (Supplement 1): S1-S193
Handelsman Y, et al. ENDOCRINE PRACTICE. April 2015; 36 21 (Suppl 1)
Starting Insulin Inpatient (Non-Critically Ill)

TDD
- 0.2 - 0.3 units/kG/day: elderly, renal failure, insulin naïve, insulin sensitive (thin)
- 0.4 units/kG/day: average patient
- 0.5 – 0.6 units/kG/day: obese, insulin resistant, grossly uncontrolled

• 50% basal:50% bolus (split between 3 meals)

Basal
0.1 – 0.2 units/kG/day

Correction scale
(starting at BG ≥ 150 mG/dL)
- Low scale
- Moderate scale

Diabetes Care. 2019 Jan; 42 (Supplement 1): S1-S193
Inpatient Blood Glucose Goals

• Majority of critically ill and non-critically ill BG goal: **140 – 180 mG/dL**
 ✓ Can have less stringent goals for terminally ill, severe comorbidities, or with less nursing oversite (e.g., rehab facility)
 ✓ Can have more stringent goals for select patients
• However, increased rates of **severe hypoglycemia and mortality** with strict inpatient BG control

• Surgical patients: goal < 180 mG/dL was associated with lower mortality and stroke (vs. < 200 mG/dL)
 • No additional benefit and more hypoglycemia where goal < 140 mG/dL
Troubleshooting Inpatient Hyperglycemia

- Is the patient ordered for the correct diet (consistent carbohydrate diet)?
- Is the patient eating outside food/juices/sodas?
- Is the patient on insulin sliding scale only?
- Was the patient started on corticosteroids? How long will the patient be on steroids?
- Is the patient receiving enteral or parenteral nutrition?
Special Inpatient Populations

Patient on Enteral Tube Feeds

- Hyperglycemia may affect ~30% of patients receiving enteral nutrition
- Type of feeding: continuous, bolus, or nocturnal ± oral nutrition

Continuous Feeds

- Basal/bolus
 - 50% basal (once daily glargine or twice daily NPH)
 - 50% bolus (q4 hrs – rapid acting insulin, or q6 hrs – regular insulin)
- NPH q6h

Bolus Feeds

- Basal/bolus → ensure bolus insulin + correction timed before bolus feeds
 - Basal 40%: bolus 60%

Nocturnal (cycled enteral feeds)

- NPH qHS + corrective scale insulin

Concern with long-acting basal insulin because if feeds are held or stopped, can lead to hypoglycemia → consider D10W IV @ 50 mL/hr (and check BG q3h)

McCulloch D, et al. UpToDate; 2017
Special Inpatient Populations

Corticosteroids

- Can cause severe hyperglycemia, especially prandial glucose
- Prednisone once daily peaks in 4 to 8 hours → NPH once daily may be used
- Long-acting steroids (dexamethasone) or greater frequency steroids → Long-acting insulin
- Adjust pre-meal and correction insulin accordingly

Gastroparesis

- Can be challenging due to nausea and vomiting → can give pre-meal dose after eating or once 50% meal consumed

Kidney Failure (AKI, ESRD, CKD)

- An elevated creatinine will delay the clearance of insulins
- Must be cautious when making insulin adjustments in patients

Question #3

Answer based on the following scenario:

61 yo F with uncontrolled T2DM has a FS of 202 mG/dL before dinner. She decides she isn’t going to eat her meal as she is in too much pain. The bedside nurse calls pharmacy for help since she is ordered for pre-meal and correction scale insulin.

True/False
You should advise the RN to hold the pre-meal insulin but give the correction scale insulin as ordered as FS is elevated. Advise RN to get provider order to “hold pre-meal insulin”
Question #3

Answer based on the following scenario:

61 yo F with uncontrolled T2DM has a FS of 202 mG/dL before dinner. She decides she isn’t going to eat her meal as she is in too much pain. The bedside nurse calls pharmacy for help since she is ordered for pre-meal and correction scale insulin.

True/False
You should advise the RN to hold the pre-meal insulin but give the correction scale insulin as ordered as FS is elevated. Advise RN to get provider order to “hold pre-meal insulin”

TRUE
Continuous Glucose Monitors (CGMs) and Insulin Pumps
Continuous Glucose Monitors (CGMs)

Not all inclusive

Medtronic Guardian™ Connect

Freestyle Libre

Dexcom G6®

Senseonics Eversense®

Marrero D. Diabetes Forecast. 2019 Mar; 66 – 73
<table>
<thead>
<tr>
<th>CGM</th>
<th>Receiver</th>
<th>Warm-up Time</th>
<th>Calibration (at home)</th>
<th>Sensor Duration</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeStyle Libre (14-day)</td>
<td>Yes or certain mobile phones</td>
<td>1 hour after scanning</td>
<td>None</td>
<td>14 days</td>
<td>Need to scan - doesn’t communicate with reader continuously</td>
</tr>
<tr>
<td>Dexcom G6®</td>
<td>Yes or smart device</td>
<td>2 hours after inserting sensor</td>
<td>None</td>
<td>10 days</td>
<td>Continuously sends data - Sensor and transmitter need to be within 20 ft of receiver or smart device</td>
</tr>
<tr>
<td>Medtronic (Guardian™ Connect)</td>
<td>None (mobile phone)</td>
<td>2 hours after inserting sensor</td>
<td>q12 hrs (BG needs to be 40 – 400 mG/dL)</td>
<td>7 days</td>
<td>Continuously sends data - Transmitter must be 20 ft from phone</td>
</tr>
<tr>
<td>Senseonics Eversense®</td>
<td>None (mobile phone)</td>
<td>24 hours after inserting implantable sensor</td>
<td>q12 hrs (BG needs to be 40 - 400 mG/dL)</td>
<td>90 days</td>
<td>Continuously sends data - transmitter must be 25 ft from phone</td>
</tr>
</tbody>
</table>
Inpatient Use of CGMs

• The previously mentioned CGMS are FDA-approved in outpatient setting only
 • *One CGM approved for inpatient use (GlucoScout®)*
• Several inpatient studies have shown that CGM use vs. POC testing did not improve inpatient glucose control but did detect more hypoglycemic events
• The Endocrine Society recommends against CGMs alone in the ICU or operating room settings, where changing patient conditions may affect CGM accuracy

Consensus Statement by Diabetes Technology Society

<table>
<thead>
<tr>
<th>ICU</th>
<th>Non-ICU</th>
</tr>
</thead>
</table>
| • Most studies looked at accuracy
 • Lack of clinical outcomes data
 • Need training for staff
 • Need IT to integrate CGM data into EMR
 • If cost prohibitive, defining which patients would benefit | • Less data compared to ICU
 • Potential advantage is identifying glucose trends and earlier intervention |

Not enough data to support inpatient CGMs over POC
Consensus Statement by Diabetes Technology Society

Should Home CGMs be continued?

• Calibration concerns
 • Real-time CGMs should be calibrated twice daily with hospital meter
 • Insulin dosing should not be based solely on CGM data inpatient
 • POC should always be continued and proper documentation of all BG values

• Liability
 • If continued, patients should sign waivers understanding risks and benefits of continued CGM use
 • Any waivers should include contraindications to inpatient use and that providers have the right to remove CGMs

• Need both accuracy and clinical outcomes data during acute inpatient conditions vs. POC

• Consensus
 • Outpatient CGM should be continued inpatient only if the inpatient facility has proper protocols in place for safe use

Insulin Pumps

Rapid-acting insulin is used in insulin pumps. If the pump is discontinued, the patient has a high risk of going into DKA

Tandem® t-slim

Medtronic MiniMed™
(630G, 670G)

Insulet Omnipod®

Valeritas’ V-go®
Combination CGM + Insulin Pump (with tubing)

Medtronic MiniMed™ 630G
(±CGM: Medtronic Guardian™ Sensor 3)

Tandem® t:slim x2™
(CG: Dexcom G6)

Medtronic MiniMed™ 670G
(CG: Medtronic Guardian™ Sensor 3)

Insulin Pumps (without tubing)

Insulet Omnipod®

Valeritas’ V-go®

Appropriate Inpatient Use of Insulin Pumps

ADA and AACE support the use of insulin pumps inpatient provided that . . .

Patients are:

• mentally and physically able
• on relatively stable insulin doses
• well-versed in carbohydrate counting and have adequate oral intake
• understand sick day management

Hospital staff:

• Have policies to guide inpatient pump use
• Have staff with expertise in insulin pumps
• Document basal rates and bolus doses
Inpatient Insulin Pump Requirements

<table>
<thead>
<tr>
<th>Patient</th>
<th>Nurse (RN)</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Self Assessment</td>
<td>• Perform and document POC testing</td>
<td>• Assess patient’s competency & safety to use pump inpatient</td>
</tr>
<tr>
<td>• Sign Attestation forms</td>
<td>• Document the bolus/correction doses given by patient (ASK PATIENT)</td>
<td>• Endocrine consult</td>
</tr>
<tr>
<td>• Capable and competent for using insulin pump</td>
<td>• Check infusion site once per shift/daily</td>
<td>Inpatient orders</td>
</tr>
<tr>
<td>• Use hospital meter and insulin (from pharmacy)</td>
<td>• Document site change q2-3 days</td>
<td>• State patient, significant other, parent or legal guardian may manage insulin pump</td>
</tr>
<tr>
<td>• Have 3 spare sets of supplies (e.g., infusion set or pod, cartridge and syringe)</td>
<td>• Don’t give additional insulin (unless pump is removed and orders are given by MD managing the pt’s insulin pump)!</td>
<td>• Type of insulin</td>
</tr>
<tr>
<td>• Change site q2-3 days</td>
<td>• If insulin pump is removed, document the disconnection and reconnection</td>
<td>• Pump type (and 800 #), basal rate(s), insulin to carb ratio, insulin sensitivity factor, BG targets</td>
</tr>
<tr>
<td>• Report boluses to RN</td>
<td></td>
<td>• POC orders and notification parameters</td>
</tr>
<tr>
<td>• Report carbohydrate intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If pump managed by someone else, must stay in hospital throughout stay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Insulin Pump." Northwell Health; 2016.
Jornsay D. ADA’s 78th Scientific Sessions; 2018
Patient Self Assessment Sheet for Personal Insulin Pump
(Recommend completing form with presence of the provider.)

Patient Name: ____________________________ Physician: ____________________________

Actual Weight: ____________________________ Age: ____________________________

1. Type of Diabetes ____________________________
2. How long have you had Diabetes? ____________________________
3. How long have you been using an insulin pump? ____________________________
4. Pump Manufacturer __________________ Model and Serial Number (found on back of insulin pump) ____________________________
5. Name of Insulin used in pump ____________________________
6. How often do you change your infusion set and site? ____________________________
 a. Date of last set and site change? ____________________________
7. Name of person who changes set and site? ____________________________
8. Type of infusion set currently in use? ____________________________
9. Do you have insulin pump supplies with you? ______ If yes, how many days of supplies do you have? ____________________________
10. When do you test your own blood glucose? ____________________________
11. What type of blood glucose meter do you use? ____________________________
12. How often do you experience hypoglycemia (Low blood sugar) ____________________________
13. What is your preferred treatment for hypoglycemia (Low blood sugar)? ____________________________
14. When do you check your urine/blood for ketones? ____________________________
 Method used? ____________________________
15. What time was your last insulin bolus? ____________________________
16. How many units of insulin did you last bolus? ____________________________

Current Insulin Pump Settings

17. Please list basal rates:

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Units/Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td></td>
</tr>
<tr>
<td>04:00</td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td></td>
</tr>
<tr>
<td>06:00</td>
<td></td>
</tr>
<tr>
<td>07:00</td>
<td></td>
</tr>
<tr>
<td>08:00</td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>1pm (13:00)</td>
<td></td>
</tr>
<tr>
<td>2pm (14:00)</td>
<td></td>
</tr>
<tr>
<td>3pm (15:00)</td>
<td></td>
</tr>
<tr>
<td>4pm (16:00)</td>
<td></td>
</tr>
<tr>
<td>5pm (17:00)</td>
<td></td>
</tr>
<tr>
<td>6pm (18:00)</td>
<td></td>
</tr>
<tr>
<td>7pm (19:00)</td>
<td></td>
</tr>
<tr>
<td>8pm (20:00)</td>
<td></td>
</tr>
<tr>
<td>9pm (21:00)</td>
<td></td>
</tr>
<tr>
<td>10pm (22:00)</td>
<td></td>
</tr>
<tr>
<td>11pm (23:00)</td>
<td></td>
</tr>
</tbody>
</table>

18. List of pre meal bolus insulin/carbohydrate ratio

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Ratio (Unit/Gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td></td>
</tr>
</tbody>
</table>

19. Insulin sensitivity factor/correction factor (How many points does 1 unit of insulin lower your blood sugar?)

<table>
<thead>
<tr>
<th>Start Time</th>
<th>ISF</th>
</tr>
</thead>
</table>

20. Blood Glucose Target

<table>
<thead>
<tr>
<th>Start Time</th>
<th>BGT (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td></td>
</tr>
</tbody>
</table>

21. Active Insulin Time ____________________________

22. Emergency Contacts:

 Physician: ____________________________
 Phone: ____________________________
 Responsible Family Member: ____________________________
 Phone: ____________________________

 Patient or Significant Other or Parent or Legal guardian:
 Name: ____________________________
 Signature: ____________________________
 Date: ____/____/____ Time: ____

“Insulin Pump.” Northwell Health; 2016. 57
Insulin aspart (NovoLog) Pump - Subcutaneous, Continuous Pump

Special Instructions: Insulin aspart (NovoLog) pump
Administration Instructions: Dispose unused medication in BLACK bin.
This is a Look-alike/Sound-alike Medication

Basal Rate:
- Start Time: 00:00, Rate: 1.1 Units/Hour
- Start Time: 05:00, Rate: 1.45 Units/Hour
- Start Time: 14:00, Rate: 1.5 Units/Hour
- Start Time: 19:30, Rate: 1.3 Units/Hour

Insulin to Carb Ratio:
- Start Time: 00:00, Ratio: 1.9 Unit:Grams

Insulin Sensitivity Factor:
- Start Time: 00:00, ISF: 1:50

Blood Glucose Target:
- Start Time: 00:00, BGT: 100-120 mG/dL
Inappropriate Uses of Insulin Pump Inpatient

- Refusal to sign appropriate paperwork
- Change in patient status resulting in ability to self manage pump
 - Altered state of consciousness
 - Altered state of physical function
 - Critical condition (e.g., DKA)
 - Risk for suicide
 - Emotional and behavioral issues interfering with self management
- Patient, parent or legal guardian does not have the capacity to manage the pump
- Patient, parent or legal guardian declines using pump in the hospital
- Other circumstances identified by health care provider
 - Pump malfunction
 - Lack of supplies

Alternative insulin needs to be ordered

Temporary Disconnection of the Insulin Pump

Insulin pump (and CGM) must be removed for tests such as:

- MRI
- CT Scan
- X-Rays
- Fluoroscopy
- Electrocautery surgery
- Diathermy

• Always check POC before disconnecting
• Pump without tubing (e.g., Omnipod) must be removed prior to above tests
• Pumps with tubing (e.g., Medtronic) the insertion set could stay in place during the above testing but tubing and pump should be removed

Alternative insulin needs to be ordered if pump will be disconnected for > 1 hour

Lansang C. Cleveland Clinic; 2016.
Jornsay D. ADA’s 78th Scientific Sessions; 2018
Surgery and Insulin Pumps

- Sobel et al. showed that insulin pump use is safe and effective for elective, same-day surgeries when it is ≤ 120 minutes and a peri-operative protocol is followed.

<table>
<thead>
<tr>
<th>What needs to happen for continued pump use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital</td>
</tr>
<tr>
<td>• Perioperative protocol</td>
</tr>
<tr>
<td>• Approval from Anesthesia/surgical team to continue pump</td>
</tr>
<tr>
<td>• Documentation is key! (pump use and BG: pre-op, intra-op, and post-op)</td>
</tr>
<tr>
<td>• If surgery is lasting more than 1 – 3 hours, recommend removing the insulin pump and providing alternative insulin</td>
</tr>
</tbody>
</table>

Potential Mishaps

- Pump interference from magnets or X-rays intraoperatively
- Accidental site displacement (→ DKA)
- Lack of staff knowledge

“Peri-Operative” Northwell Health; 2018.
“Pre-operative.” AACE.
Lansang C. Cleveland Clinic; 2016.
Jornsay D. ADA’s 78th Scientific Sessions; 2018.
How to Transition from Insulin Pump to SQ Insulin

Basal
- Check pump settings and add total basal insulin in last 24 hours
 - Remember patients usually have multiple basal rates (units/hr)
- Overlap dose of basal insulin with pump by **two hrs before disconnecting**

Pre-meal
- Insulin:carbohydrate ratio
 - E.g., 1 unit insulin: 10 G carbohydrates
- If the patient is eating consistent carbohydrate meals in the hospital (45G/60G/60G), then pre-meal insulin can be between 4 – 6 units before meals

Correction scale insulin
- Insulin sensitivity (correction) factor (ISF)
- ISF > 50 → low dose correction
- ISF < 25 → medium dose correction
 - Anything in between, err on the side of caution and use low dose correction
- E.g., ISF 1:45 means 1 unit of rapid-acting insulin will lower BG by 45 mG/dL → low dose correction

DKA is likely with pump interruption

Lansang C. Cleveland Clinic; 2016.
Question #4

Answer based on the following scenario:

The pharmacy technician performs a medication reconciliation on a patient who is A&O x2 due to a suspected gastrointestinal infection. She is currently NPO. The technician notices the patient is wearing an insulin pump and asks the patient about it but the patient is not sure.

True/False
The patient should continue to use their insulin pump in their current state of health.
Question #4

Answer based on the following scenario:

The pharmacy technician performs a medication reconciliation on a patient who is A&O x2 due to a suspected gastrointestinal infection. She is currently NPO. The technician notices the patient is wearing an insulin pump and asks the patient about it but the patient is not sure.

True/False
The patient should continue to use their insulin pump in their current state of health

FALSE
Conclusion

• Many things can go wrong for a patient with diabetes admitted to the hospital
• As pharmacists and pharmacy technicians, it is our responsibility to
 ✓ ensure accurate medication reconciliations
 ✓ prevent medication mishaps
 ✓ promote safe inpatient stays

Inpatient Diabetes
Any Questions?
Special thank you to the following colleagues for reviewing slides:

Rifka Schulman, MD, FACE, CNSC
Tori Calder, NP, CDE
Ann Marie Hasse, MSN, RN, CDE, CDTC
Christopher Ho, PharmD, BCACP

Thank you to Matthew Schneider for graphic design artwork
References

References

42. Jornsay D. Patient’s Own Diabetes Devices—To Wear or Not to Wear? Webcast Presented at: American Diabetes Association’s 78th Scientific Sessions; June 24, 2018; Orlando, FL.
44. Sobel S, Augustine M, et al. Safety and Efficacy of a Peri-operative protocol for patient with diabetes treated with continuous subcutaneous insulin infusion who are admitted for same day surgery. Endocrine Practice 2015 21:11, 1269-1276
46. Schneider M. Confused Pharmacist [graphic]; 2019
47. Schneider M. Pitfall 1 [graphic]; 2019
48. Schneider M. Pitfall 2 [graphic]; 2019
49. Schneider M. Pharmacist Saves Patient From Pitfall [graphic]; 2019