Common Mishaps and Pitfalls in the Inpatient Management of Diabetes

Caitlyn Cummings, PharmD, BCPS
Clinical Coordinator, Transitions of Care
Long Island Jewish Medical Center
9/18/19

Disclosures

Nothing to Disclose

Objectives

At the completion of this activity, pharmacists will be able to

- Identify an appropriate insulin conversion regimen for patients admitted to the inpatient setting
- Recognize appropriate insulin management strategies for common inpatient scenarios
- Discuss appropriate and inappropriate uses of patient devices (continuous glucose monitors and insulin pumps)

Objectives

At the completion of this activity, pharmacy technicians will be able to

- Describe how pharmacy technicians can play a role in medication reconciliation on admission
- Identify patients with diabetes who would benefit from pharmacy intervention
- Recognize patients wearing diabetes devices

Abbreviations

EMR: electronic medical

record

AMS: altered mental status

T1DM: type 1 diabetes

T2DM: type 2 diabetes

Hrs: hours

PO: by mouth

TDD: total daily dose

qHS: every night at bedtime

mL: milliliter

BID: twice daily

D50W: dextrose 50% in water

IVP: intravenous push

kG: kilogram

BG: blood glucose

DKA: diabetic ketoacidosis

e.g.: for example

HHS: hyperosmolar hyperglycemic state

TID: three times a day

AC: before meals

dL: deciliter

ESRD: end-stage renal disease

HD: hemodialysis

s/p: status post

A&O: alert & oriented

POC: point of care

FS: fingerstick

CDE: certified diabetes

educator

D5W: dextrose 5% in water

RN: registered nurse

SQ: subcutaneous

D10W: dextrose 10% in water

AKI: acute kidney injury

CKD: chronic kidney disease

EGD: esophagogastro-

duodenoscopy

NPO: nothing by mouth

A1c: hemoglobin A1c

MRI: magnetic resonance

imaging

CT scan: computerized

tomography scan

FYI: for your information

IT: information technology

ICU: intensive care unit

ADA: American Diabetes

Association

AACE: American Association of

Clinical Endocrinologists

MD: medical doctor

OR: operating room

G: gram

A patient with diabetes is admitted to the hospital...

Medication Reconciliation

- Who is doing medication reconciliations at your institutions?
 - Physicians
 - Residents
 - Mid-level providers
 - Nurses

- Pharmacists
- Pharmacy technicians
- Pharmacy interns
- Pharmacy residents
- Is medication reconciliation being confirmed with 2 or more sources?
 - Patient/family
 - Pharmacy
 - Actual medication containers

- Previous admission or discharge
- Medication list
- Patient's physician(s)
- Is there continuing education/updates for medication history providers regarding new medications?

Background: Medication Reconciliation

- Pharmacy team conducted medication reconciliation within 24 hrs of admission for patients followed by the Endocrinology service (74% of patients had diabetes)
- Pharmacist classified any difference between medication history and inpatient admission orders as an intended or unintended discrepancy
 - If the physician corrected an unintentional discrepancy, it was considered to be a medication error

Results	Patients with diabetes (N = 671)	Patients without diabetes (N = 233)	p-value
Medication errors on admission	22.1% (n = 148)	12.0%	p < 0.005
Potentially serious medication errors*	33.8% (n = 50)	7.1%	p < 0.005

^{*}Classified by consensus panel using National Coordinating Council for Medication Error Reporting and Prevention Index - Serious may cause harm or extend hospital stay.

Background: Medication Reconciliation

- Using the same pool of patients from previous slide, this study looked at medication errors on hospital admission in patients with Type 1 and Type 2 diabetes (N = 671)
- Prevalence of medication errors on admission
 - Patients with Type 1 Diabetes (n = 163): 21.5%
 - Patients with Type 2 Diabetes (n = 508): 22.2%
- After adjusting for age and number of treatments, patients with Type 1 diabetes had about a **two-fold** higher odds of having medication errors and potential serious errors on admission compared with those with Type 2 diabetes

Basic Rules of Thumb

After a medication reconciliation is completed for a patient, what should we think about before starting inpatient orders?

- Do they have Type 1 or Type 2 Diabetes (T1DM or T2DM)?
- Is the home regimen appropriate?
- Are they actually taking these documented doses?
- What is their PO status inpatient?
- Is their home diet uncontrolled?
- Does the patient need pharmacist counseling or intervention?

Insulin Conversion on Admission

Mishaps with Insulin Conversion on Admission

Using a Home Insulin Regimen

Calculate Total Daily Dose (TDD) of home insulin regimens Appropriate to use 80% of regimen* *unless hyperglycemia, then use 100% of TDD Inpatient Regimen 50% Basal 50% Bolus (split between 3 meals)

Disclaimer

- The following conversions come from primary literature, as well as package inserts, Lexicomp®, Pharmacist Letter for outpatient conversions
- It is usually appropriate to dose reduce (~20%) while the patient is hospitalized (unless hyperglycemic)

Basal Insulins

******Basal insulin should never be held in patients with T1DM****** Withholding basal insulin can lead to DKA in T1DM

Outpatient Regimen		Inpatient Conversion to Lantus® (insulin glargine)
Inculin glarging	Basaglar® 100 units/mL	1:1
Insulin glargine	Toujeo® 300 units/mL	use 80% TDD
Insulin detemir	Levemir® 100 units/mL	1:1
Insulin degludec	Tresiba® 100 or 200 units/mL	1:1

➤ E.g., Patient is on Toujeo® 40 units qHS at home → Lantus 32 units qHS inpatient

➤ Levemir® 10 units twice daily → Lantus® 20 units once daily

may need to dose reduce (to account for inpatient variability)

Lantus® [package insert]; 2018
Insulin glargine. Lexicomp; 2019
King AB. Diabetes Obes Metab. 2009;11(1):69-71
Rosenstock J, et al. Diabetologia. 2008;51(3):408-16.
Pharmacist's Letter; Feb 2017

Basal Insulins: Intermediate-acting (continued)

Outpatient Regimen (NPH insulin)		Inpatient Conversion to Lantus® (insulin glargine)
HumuLIN® N 100 units/mL	Once daily NPH	1:1
NovoLIN® N 100 units/mL	Twice daily NPH	use 80% TDD and convert to insulin glargine once daily

- Twice daily NPH: Humulin[®] N 20 units BID → insulin glargine 32 units qHS
- NPH has variable pharmacokinetics (peak 4 12 hrs and duration 14 24 hrs)
 - Dose reduction lessens chance of hypoglycemia

may need to dose reduce (to account for inpatient variability)

Rapid-Acting Insulins

Outpatient Regimen		Inpatient Conversion to Humalog® (insulin lispro)	Inpatient Conversion to Novolog® (insulin aspart)	
Insulin glulisine	Apidra® 100 units/mL	1:1	1:1	
Inculin licaro	Admelog® 100 units/mL		1.1	
Insulin lispro	Humalog® 100 or 200 units/mL	1:1	1:1	
Insulin aspart	Novolog® 100 units/mL	1:1	1:1	
	Fiasp® 100 units/m	>		
	Afrezza® inhaled insulin	1:1	1:1	

• Make sure rapid-acting insulin is three times a day before meals plus corrective scale

Regular Insulin

Outpatient Regimen (Regular Human Insulin)	Inpatient Conversion to Humalog® (insulin lispro)	Inpatient Conversion to Novolog® (insulin aspart)
Humulin® R 100 units/mL Novolin® R 100 units/mL	1:1	1:1

- FYI Uses for regular insulin inpatient
 - Hyperkalemia: IV Push (± 25 grams dextrose or 50 mL D50W, if BG < 250 mG/mL)
 - Insulin drip (DKA or HHS): IVP bolus [0.1 units/kG] + infusion [0.1 units/kG/hr] or infusion without bolus [0.14 units/kG/hr]

Concentrated Regular Insulin (Humulin® R U-500)

- **Endocrine consult** (if your institution has inpatient team)
- Some institutions have policies in place and allow for inpatient Humulin® R U-500
 - Given 30 minutes prior to meals (two or three times daily)
 - Nurses <u>MUST</u> use U-500 insulin syringe with Humulin R U-500 vial
 - Otherwise, can give 5 TIMES the dose with U-100 syringe
- Conversion to basal/bolus is as follows:

Mixed Insulin

Outpatient Regimen		Inpatient Regimen
Rapid-acting + Intermediate-acting insulin	HumaLOG® Mix 75/25, HumaLOG® Mix 50/50, NovoLOG® Mix 70/30 Ryzodeg® 70/30 (usually BID dosing)	 TDD home regimen x 0.8 ↓ 50% basal + 50% bolus Use % of each
Short-acting + Intermediate-acting insulin	NovoLIN® 70/30, HumuLIN® 70/30 (usually BID dosing)	component to convert inpatient e.g., 70% = basal, 30% = bolus

- Typically don't use mixed insulin inpatient (higher risk of hypoglycemia (2 peaks), more variable pharmacokinetics, harder to adjust dose, patient's appetite or PO status may change)
- Eg., Humulin® 70/30: 30 units before breakfast and 15 units before dinner

TDD: $45 \times 0.8 = 36$ units \rightarrow insulin glargine 18 units qHS + insulin lispro 6 units TID AC

may need to dose reduce (to account for inpatient variability)

Summary

Upon medication reconciliation, you notice		
Insulin-specific	Patient-specific	
Inappropriate regimen	Uncontrolled sugars (hypo- or hyperglycemic)	Other comorbidities preventing optimal care (blind, tremors, alcoholism, dementia)
Confusing regimen	Patient is confused (medically or regarding diabetes)	Non-adherent/poor follow-up
Unaffordable regimen	Lost insurance (regimen no longer feasible)	Multiple readmissions

- Role of technician to raise concerns/questions/red flags to pharmacist
- Role of pharmacist to help with inpatient insulin conversion (first), education for diabetes and medications, and to assist with prior authorizations and affordable or alternative insulin for discharge

Question #1

What is the best inpatient insulin regimen based on the following information:

- Home medications: NovoLog® Mix 70/30 FlexPen® 20 units before breakfast and Basaglar® 20 units qHS (TDD: 40 units)
- Current BG 100 mG/dL
- Adherent to home regimen
- Food and nutrition: consistent carbohydrate diet ordered
- A. Use the same home regimen inpatient: NovoLog® Mix 70/30 vial 20 units before breakfast and insulin glargine 20 units qHS
- B. Use TDD x 0.8 and recommend insulin glargine 16 units qHS, insulin lispro 5 units TID AC, and low correction sliding scale
- C. Insulin lispro 20 units TID AC and insulin glargine 20 units qHS
- D. Corrective sliding scale insulin TID AC and qHS only

Question #1

What is the best inpatient insulin regimen based on the following information:

- Home medications: NovoLog® Mix 70/30 FlexPen® 20 units before breakfast and Basaglar® 20 units qHS (TDD: 40 units)
- Current BG 100 mG/dL
- Adherent to home regimen
- Food and nutrition: consistent carbohydrate diet ordered
- A. Use the same home regimen inpatient: NovoLog® Mix 70/30 vial 20 units before breakfast and insulin glargine 20 units qHS
- B. Use TDD x 0.8 and recommend insulin glargine 16 units qHS, insulin lispro 5 units TID AC, and low correction sliding scale
- C. Insulin lispro 20 units TID AC and insulin glargine 20 units qHS
- D. Corrective sliding scale insulin TID AC and qHS only

Appropriate insulin management strategies for common inpatient scenarios

Inpatient Hypoglycemia

33 yo M with brittle T1DM, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you do?

Inpatient Hypoglycemia

- Level 1 hypoglycemia is blood sugar less than 70 mG/dL
- Level 2 hypoglycemia is < 54 mG/dL
 - Neuroglycopenic symptoms occur and immediate treatment required
- Level 3 hypoglycemia is a severe event with altered mental and/or physical functioning requiring assistance from another person
- Institutions should have a hypoglycemia <u>prevention</u> and <u>management protocol</u>

Neuroglycopenic	Autonomic (neurogenic)
 confusion weakness or fatigue severe cognitive failure seizure coma 	tremulousnesspalpitationsanxietysweatinghunger

ADULT HYPOGLYCEMIA PROCEDURE

Determining WHY Hypoglycemia Happened

• If a patient experiences BG <70 mG/dL, their treatment regimen needs to be reviewed because it is a predictive factor for Level 3 hypoglycemic event

Here are some questions you should think about/ask in determining **WHY** hypoglycemia occurred:

- Was the pre-meal insulin given too soon and the meal was delayed?
- Was the pre-meal insulin given and the patient was taken to a test?
- Was an old fingerstick number used and too much correction insulin given?
- Was the pre-meal insulin given and the patient was nauseous or didn't eat?
- Is the patient's diet much more controlled inpatient, therefore they need less than their home insulin requirements?
- Is the patient on too much insulin or concomitant oral hypoglycemics?
- Was corticosteroid dose decreased suddenly?

Troubleshooting Hypoglycemia Scenarios

- Was the pre-meal insulin given too soon and the meal was delayed?
- Was the pre-meal insulin given and the patient was taken to a test?
- Was an old fingerstick number used and too much correction insulin given?

Educate team members that POC testing should be immediately before meals for most accurate FS reading. Pre-meal ± correction insulin should be given when the meal is in front of the patient and they plan on eating.

- Was the pre-meal insulin given and the patient was nauseous or didn't eat? If the patient has variable appetite, you can educate team members to wait to administer pre-meal insulin until the patient has started to eat or they eat \geq 50% of the meal. Always check with team/Endocrine depending on particular situation.
- Is the patient's diet much more controlled inpatient, therefore they need less than their home insulin requirements?

Patient may need education from pharmacist, nutritionist, and/or CDE

- Is the patient on too much insulin or concomitant oral hypoglycemics?
- Was corticosteroid dose decreased suddenly?

Stop oral hypoglycemic agents inpatient and dose adjust insulin

Patients Who Are NPO

- Don't hold basal insulin!!!
 - Use same dose if BG uncontrolled
 - Use about 80% of dose if BG well controlled
- <u>Do</u> hold standing pre-meal insulin (e.g., Humalog®)
- <u>Don't</u> hold correction scale insulin (e.g., Humalog®)

- If they become hypoglycemia . . .
 - Remember, nothing by mouth!
 - Can give D50W or glucagon 1 mG x 1
 - Can start D5W drip
 - Prevention is key! Recommend reducing basal insulin by ~20% the night before planned procedures
 - If the patient's BG is uncontrolled (≥250 mG/dL), can keep same dose of basal insulin

Question #2

33 yo M with brittle DM1, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you recommend?

- A. Nothing patient is asymptomatic
- B. Correct with 15 grams carbohydrates, recheck fingerstick in 15 minutes
- C. Correct with 1 ampule of D50W
- D. Correct with 30 grams carbohydrates, recheck fingerstick in 1 hour

Question #2

33 yo M with brittle DM1, ESRD on HD, s/p amputation. He is hypoglycemic at bedtime, BG is 67 mG/dL. He is A&Ox3, consistent carbohydrate/RENAL diet, and is currently asymptomatic. What do you recommend?

- A. Nothing patient is asymptomatic
- B. Correct with 15 grams carbohydrates, recheck fingerstick in 15 minutes
- C. Correct with 1 ampule of D50W
- D. Correct with 30 grams carbohydrates, recheck fingerstick in 1 hour

Follow-Up Question

Same patient - His blood glucose has been corrected, and it is 103 mG/dL fifteen minutes later. Insulin glargine (Lantus®) 8 Units SQ qHS is ordered. What would you recommend given his episode of hypoglycemia and T1DM?

- A. Hold Lantus® Patient was hypoglycemic, more insulin will cause further hypoglycemia plus it's a small dose
- B. Give full dose, the order is clear
- C. Discuss with provider and RN that the patient has T1DM, so you would recommend giving ~20% dose reduction of Lantus tonight.
- D. Give 50% of dose

Follow-Up Question

Same patient - His blood glucose has been corrected, and it is 103 mG/dL fifteen minutes later. Insulin glargine (Lantus®) 8 Units SQ qHS is ordered. What would you recommend given his episode of hypoglycemia and T1DM?

- A. Hold Lantus® Patient was hypoglycemic, more insulin will cause further hypoglycemia plus it's a small dose
- B. Give full dose, the order is clear
- C. <u>Discuss with provider and RN that the patient has T1DM, so you would recommend giving ~20% dose reduction of Lantus tonight.</u>
- D. Give 50% of dose

When to Start Insulin Inpatient (Non-Critically III)

 If a patient with T2DM is treated with <u>non-insulin therapy at home</u> (diet only, orals, non-insulin injectable) . . .

Diet ordered

- Use caution if continuing outpatient oral antidiabetic agents
- POC before meals and at bedtime
- Start sliding scale insulin
 - Not recommended to be used alone!
- If two or more BG > 180 mG/dL, add basal ± bolus insulin with corrective scale
 - Premixed vs. basal/bolus insulin similar glycemic control but <u>increased</u> hypoglycemia

NPO

- Discontinue outpatient non-insulin medications
- POC q4-6h
- Start sliding scale insulin
- If BG > 180 mG/dL, add basal insulin with corrective scale

Starting insulin inpatient doesn't necessarily mean a patient needs to go home on it

Starting Insulin Inpatient (Non-Critically III)

TDD

- 0.2 0.3 units/kG/day: elderly, renal failure, insulin naïve, insulin sensitive (thin)
- 0.4 units/kG/day: average patient
- 0.5 0.6 units/kG/day: obese, insulin resistant, grossly uncontrolled
- 50% basal:50% bolus (split between 3 meals)

Basal

0.1 - 0.2 units/kG/day

Correction scale

(starting at BG \geq 150 mG/dL)

- Low scale
- Moderate scale

Inpatient Blood Glucose Goals

- Majority of critically ill and non-critically ill BG goal: <u>140 180 mG/dL</u>
 - ✓ Can have less stringent goals for terminally ill, severe comorbidities, or with less nursing oversite (e.g., rehab facility)
 - ✓ Can have more stringent goals for select patients
- However, increased rates of <u>severe hypoglycemia and mortality</u> with strict inpatient BG control
- Surgical patients: goal < 180 mG/dL was associated with lower mortality and stroke (vs. < 200 mG/dL)
 - No additional benefit and more hypoglycemia where goal < 140 mG/dL

Troubleshooting Inpatient Hyperglycemia

- Is the patient ordered for the correct diet (consistent carbohydrate diet)?
- Is the patient eating outside food/juices/sodas?
- Is the patient on insulin sliding scale only?
- Was the patient started on corticosteroids? How long will the patient be on steroids?
- Is the patient receiving enteral or parenteral nutrition?

Special Inpatient Populations

Patient on Enteral Tube Feeds

- Hyperglycemia may affect ~30% of patients receiving enteral nutrition
- Type of feeding: continuous, bolus, or nocturnal ± oral nutrition

Continuous Feeds

- Basal/bolus
 - 50% basal (once daily glargine or twice daily NPH)
 - 50% bolus (q4 hrs rapid acting insulin, or q6 hrs regular insulin)
- NPH q6h

Bolus Feeds

- Basal/bolus → ensure bolus insulin + correction timed before bolus feeds
 - Basal 40%: bolus 60%

Nocturnal (cycled enteral feeds)

NPH qHS + corrective scale insulin

Concern with long-acting basal insulin because if feeds are held or stopped, can lead to hypoglycemia → consider D10W IV @ 50 mL/hr (and check BG q3h)

Special Inpatient Populations

Corticosteroids

- Can cause severe hyperglycemia, especially prandial glucose
- Prednisone once daily peaks in 4 to 8 hours → NPH once daily may be used
- Long-acting steroids (dexamethasone) or greater frequency steroids → Long-acting insulin
- Adjust pre-meal and correction insulin accordingly

Gastroparesis

 Can be challenging due to nausea and vomiting → can give pre-meal dose after eating or once 50% meal consumed

Kidney Failure (AKI, ESRD, CKD)

- An elevated creatinine will delay the clearance of insulins
- Must be cautious when making insulin adjustments in patients

Question #3

Answer based on the following scenario:

61 yo F with uncontrolled T2DM has a FS of 202 mG/dL before dinner. She decides she isn't going to eat her meal as she is in too much pain. The bedside nurse calls pharmacy for help since she is ordered for pre-meal and correction scale insulin.

True/False

You should advise the RN to hold the pre-meal insulin but give the correction scale insulin as ordered as FS is elevated. Advise RN to get provider order to "hold pre-meal insulin"

Question #3

Answer based on the following scenario:

61 yo F with uncontrolled T2DM has a FS of 202 mG/dL before dinner. She decides she isn't going to eat her meal as she is in too much pain. The bedside nurse calls pharmacy for help since she is ordered for pre-meal and correction scale insulin.

True/False

You should advise the RN to hold the pre-meal insulin but give the correction scale insulin as ordered as FS is elevated. Advise RN to get provider order to "hold pre-meal insulin"

Continuous Glucose Monitors (CGMs) and Insulin Pumps

Continuous Glucose Monitors (CGMs)

Not all inclusive

Freestyle Libre

Dexcom G6®

Medtronic Guardian™ Connect

Senseonics Eversense[®]

CGM	Receiver	Warm-up Time	Calibration (at home)	Sensor Duration	Transmission
FreeStyle Libre (14-day)	Yes or certain mobile phones	1 hour after scanning	None	14 days	Need to scan - doesn't communicate with reader continuously
Dexcom G6®	Yes or smart device	2 hours after inserting sensor	None	10 days	Continuously sends data - Sensor and transmitter need to be within 20 ft of receiver or smart device
Medtronic (Guardian [™] Connect)	None (mobile phone)	2 hours after inserting sensor	q12 hrs (BG needs to be 40 – 400 mG/dL)	7 days	Continuously sends data - Transmitter must be 20 ft from phone
Senseonics Eversense®	None (mobile phone)	24 hours after inserting implantable sensor	q12 hrs (BG needs to be 40 - 400 mG/dL)	90 days	Continuously sends data - transmitter must be 25 ft from phone 48

Marrero D. Diabetes Forecast. 2019 Mar: 66 - 73

Inpatient Use of CGMs

- The previously mentioned CGMS are FDA-approved in outpatient setting only
 - One CGM approved for inpatient use (GlucoScout®)
- Several inpatient studies have shown that CGM use vs. POC testing did not improve inpatient glucose control but <u>did detect</u> <u>more hypoglycemic events</u>
- The Endocrine Society recommends <u>against</u> CGMs alone in the ICU or operating room settings, where changing patient conditions may affect CGM accuracy

Consensus Statement by Diabetes Technology Society

ICU	Non-ICU		
 Most studies looked at accuracy Lack of clinical outcomes data Need training for staff Need IT to integrate CGM data into EMR If cost prohibitive, defining which patients would benefit 	 Less data compared to ICU Potential advantage is identifying glucose trends and earlier intervention 		
Not enough data to support inpatient CGMs over POC			

Consensus Statement by Diabetes Technology Society

Should Home CGMs be continued?

- Calibration concerns
 - Real-time CGMs should be calibrated twice daily with hospital meter
 - Insulin dosing should not be based solely on CGM data inpatient
 - POC should always be continued and proper documentation of all BG values
- Liability
 - If continued, patients should sign waivers understanding risks and benefits of continued CGM use
 - Any waivers should include contraindications to inpatient use and that providers have the right to remove CGMs
- Need both accuracy and clinical outcomes data during acute inpatient conditions vs. POC
- Consensus
 - Outpatient CGM should be continued inpatient only if the inpatient facility has proper protocols in place for safe use

Insulin Pumps

Not all inclusive

Rapid-acting insulin is used in insulin pumps. If the pump is discontinued, the patient has a high risk of going into DKA

Tandem® t-slim

Medtronic MiniMedTM (630G, 670G)

Insulet Omnipod®

Valeritas' V-go®

Combination CGM + Insulin Pump (with tubing)

Medtronic
MiniMed[™]
630G
(±CGM:
Medtronic
Guardian[™]
Sensor 3)

Medtronic
MiniMed[™]
670G
(CGM: Medtronic
Guardian[™]
Sensor 3)

Tandem® t:slim x2TM (CGM: Dexcom G6)

Omnipod Insulin Management System [image]. Insulet. Available at: https://www.myomnipod.com/en-gb/about-insulet. Published 2019. Accessed February 28, 2019. Medtronic MiniMed 630G Insulin Pump System. CCS Medical. Available at: https://ccsmed.com/products/insulin-pump-supplies/medtronic-minimed-630g. Published 2019. Accessed February 28, 2019.

MiniMed 670G Insulin Pump System [image]. Medtronic. Available at: https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system. Published 2019. Accessed February 28, 2019.

T-slim X2 Insulin Pump with Dexcom G6 [image]. https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump. Published 2018. Accessed February 28, 2019.

Insulin Pumps (without tubing)

Insulet Omnipod®

Valeritas' V-go®

Appropriate Inpatient Use of Insulin Pumps

ADA and AACE support the use of insulin pumps inpatient provided that . . .

Patients are:

- mentally and physically able
- on relatively stable insulin doses
- well-versed in carbohydrate counting and have adequate oral intake
- understand sick day management

Hospital staff:

- Have policies to guide inpatient pump use
- Have staff with expertise in insulin pumps
- Document basal rates and bolus doses

Inpatient Insulin Pump Requirements

Patient	Nurse (RN)	Provider
 Self Assessment 	 Perform and document 	 Assess patient's
 Sign Attestation forms 	POC testing	competency & safety to
 Capable and competent 	 Document the 	use pump inpatient
for using insulin pump	bolus/correction doses	 Endocrine consult
• Use hospital meter and	given by patient (ASK	Inpatient orders
insulin (from pharmacy)	PATIENT)	 State patient, significant
 Have 3 spare sets of 	 Check infusion site once 	other, parent or legal
supplies (e.g., infusion set	per shift/daily	guardian may manage
or pod, cartridge and	 Document site change 	insulin pump
syringe)	q2-3 days	 Type of insulin
 Change site q2-3 days 	 Don't give additional 	 Pump type (and 800 #),
 Report boluses to RN 	insulin (unless pump is removed	basal rate(s), insulin to
 Report carbohydrate 	and orders are given by MD	carb ratio, insulin
intake	managing the pt's insulin pump)!	sensitivity factor, BG
 If pump managed by 	If insulin pump is	targets
someone else, must stay	removed, document the	 POC orders and
in hospital throughout	disconnection and	notification parameters
stay	reconnection	

Patient Self Assessment Sheet for Personal Insulin Pump (Recommend completing form with presence of the provider.)

Patient	Name:	Physician:
Actual	Weight:	Age:
1,	Type of Diabetes	
2,	How long have you had I	viabetes?
3.	How long have you been	using an insulin pump?
	Pump Manufacturer insulin pump)	Model and Serial Number (found on back or
5.	Name of Insulin used in p	ump?
6.	How often do you change	your infusion set and site?
	a. Date of last set and s	te change?
7.	Name of person who cha	nges set and site?
8.	Type of infusion set curr	ently in use?
		o supplies with you? If yes, how man
	When do you test your or glucose?	vn blood
11.	What type of blood gluce	se meter do you use?
12.	How often do you experi	ence hypoglycemia(Low blood sugar)
13.	What is your preferred t	reatment for hypoglycemia (Low blood sugar)?
14.	When do you check your	urine / blood for ketones?
	Method used?	
15.	What time was your last	insulin bolus?
16.	How many units of insuli	n did you last bolus?

Current Insulin Pump Settings

17. Please list basal rates:

Start Time	Units/Hours	
00:00	E .	
01:00	Į.	
02:00	Ů.	
03:00	((
04:00		
05:00	(C) (C) (C)	
06:00		
07:00		
08:00		
09:00		
10:00	6	
11:00		
12:00		
Ipm(13:00)		
2pm (14:00)		
3pm (15:00)	6	
4pm (16:00)		
5pm (17:00)	(
6pm (18:00)		
7pm (19:00)	E .	
8pm (20:00)	J.	
9pm (21:00)	<u> </u>	
10pm (22:00)		
11pm (23:00)	Î	

18. List of pre meal bolus insulin/ carbohydrate ratio

Start Time	Ratio(Unit:Gm)
00:00	0.0

19. Insulin sensitivity factor / correction factor (How many points does 1 unit of insulin lower your blood sugar?)

Start Time	ISF
00:00	- 14 3 14 7.

20. Blood Glucose Target

Start Time	BGT(mg/dl)
00:00	
- 9	

21. Active Insulin Time

Phone:	_
Responsible Family Member:	
r none.	_

Name:				
Signatur	e:			
Date:	1	1	Time:	

Inappropriate Uses of Insulin Pump Inpatient

- Refusal to sign appropriate paperwork
- Change in patient status resulting in ability to self manage pump
 - Altered state of consciousness
 - Altered state of physical function
 - Critical condition (e.g., DKA)
 - Risk for suicide
 - Emotional and behavioral issues interfering with self management

- Patient, parent or legal guardian does not have the capacity to manage the pump
- Patient, parent or legal guardian declines using pump in the hospital
- Other circumstances identified by health care provider
 - Pump malfunction
 - Lack of supplies

Alternative insulin needs to be ordered

Temporary Disconnection of the Insulin Pump

Insulin pump (and CGM) must be removed for tests such as:

- MRI
- CT Scan
- X-Rays

- Fluoroscopy
- Electrocautery surgery
- Diathermy
- Always check POC before disconnecting
- Pump without tubing (e.g., Omnipod) must be removed prior to above tests
- Pumps with tubing (e.g., Medtronic) the insertion set could stay in place during the above testing but tubing and pump should be removed

Alternative insulin needs to be ordered if pump will be disconnected for > 1 hour

Lansang C. Cleveland Clinic; 2016. Jornsay D. ADA's 78th Scientific Sessions; 2018 Insulin Pump Therapy [image]. Medtronic Diabetes Ireland; 2016. https://www.medtronic-diabetes.ie/what-insulin-pump-therapy. 60 Accessed: March 8, 2019.

Surgery and Insulin Pumps

• Sobel et al. showed that insulin pump use is safe and effective for <u>elective</u>, same-day surgeries when it is \leq 120 minutes and a peri-operative protocol is followed

What needs to happen for continued pump use?				
Hospital	Patient			
 Perioperative protocol Approval from Anesthesia/surgical team to continue pump Documentation is key! (pump use and BG: pre-op, intra-op, and post-op) If surgery is lasting more than 1 – 3 hours, recommend removing the insulin pump and providing alternative insulin 	 Continue usual basal rates or adjust per Endocrinologist Day before surgery: replace and fill the pump reservoir Change pump site if surgery is in the abdomen 			

Potential Mishaps				
Pump interference from magnets or X-rays intraoperatively	Accidental site displacement (→ <u>DKA</u>)	Lack of staff knowledge		

"Peri-Operative" Northwell Health; 2018.

"Pre-operative." AACE.

Lansang C. Cleveland Clinic; 2016.

Jornsay D. ADA's 78th Scientific Sessions; 2018

Nassar A, et al. Endocr Pract. 2012;18(1):49-55.

Sobel S, et al. Endocrine Practice 2015 21:11, 1269-1276

How to Transition from Insulin Pump to SQ Insulin

DKA is likely with pump interruption

Basal

- Check pump settings and add total basal insulin in last 24 hours
 - Remember patients usually have multiple basal rates (units/hr)
- Overlap dose of basal insulin with pump by two hrs before disconnecting

Pre-meal

- Insulin:carbohydrate ratio
- E.g., 1 unit insulin: 10 G carbohydrates
 - If the patient is eating consistent carbohydrate meals in the hospital (45G/60G/60G), then pre-meal insulin can be between 4 – 6 units before meals

Correction scale insulin

- Insulin sensitivity (correction) factor (ISF)
- ISF $> 50 \rightarrow low dose$ correction
- ISF $< 25 \rightarrow$ medium dose correction
 - Anything in between, err on the side of caution and use low dose correction
- E.g., ISF 1:45 means 1 unit of rapid-acting insulin will lower BG by 45 mG/dL \rightarrow low dose correction

Question #4

Answer based on the following scenario:

The pharmacy technician performs a medication reconciliation on a patient who is A&O x2 due to a suspected gastrointestinal infection. She is currently NPO. The technician notices the patient is wearing an insulin pump and asks the patient about it but the patient is not sure.

True/False

The patient should continue to use their insulin pump in their current state of health

Question #4

Answer based on the following scenario:

The pharmacy technician performs a medication reconciliation on a patient who is A&O x2 due to a suspected gastrointestinal infection. She is currently NPO. The technician notices the patient is wearing an insulin pump and asks the patient about it but the patient is not sure.

True/False

The patient should continue to use their insulin pump in their current state of health

Conclusion

- Many things can go wrong for a patient with diabetes admitted to the hospital
- As pharmacists and pharmacy technicians, it is our responsibility to
 - ✓ ensure accurate medication reconciliations
 - ✓ prevent medication mishaps
 - ✓ promote safe inpatient stays

Any Questions?

Special thank you to the following colleagues for reviewing slides:

Rifka Schulman, MD, FACE, CNSC Tori Calder, NP, CDE Ann Marie Hasse, MSN, RN, CDE, CDTC Christopher Ho, PharmD, BCACP

Thank you to Matthew Schneider for graphic design artwork

References

- 1. Breuker C, Abraham O, Di trapanie L, et al. Patients with diabetes are at high risk of serious medication errors at hospital: Interest of clinical pharmacist intervention to improve healthcare. Eur J Intern Med. 2017;38:38-45.
- 2. Breuker C, Macioce V, Mura T, et al. Medication errors at hospital admission and discharge in Type 1 and 2 diabetes. Diabet Med. 2017 Dec; 34(12):1742-174
- 3. Lantus® [package insert]. Bridgewater, NJ: sanofi-aventis; 2018.
- 4. Insulin glargine. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed February 25, 2019
- 5. King AB. Once-daily insulin detemir is comparable to once-daily insulin glargine in providing glycaemic control over 24 h in patients with type 2 diabetes: a double-blind, randomized, crossover study. Diabetes Obes Metab. 2009;11(1):69-71.
- 6. Rosenstock J, Davies M, Home PD, Larsen J, Koenen C, Schernthaner G. A randomised, 52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia. 2008;51(3):408-16.
- 7. How to Switch Insulin Products. Pharmacist's Letter/Prescriber's Letter. https://pharmacist.therapeuticresearch.com/Content/Segments/PRL/2016/Dec/How-to-Switch-Insulin-Products-10473. Updated: February 2017. Accessed: February 20, 2019.
- 8. Insulin lispro. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed February 25, 2019
- 9. Humalog® [package insert]. Indianapolis, IN: Eli Lilly and Company; 2018.
- 10. Insulin regular. Lexi-Drugs. Lexicomp. Wolters Kluwer Health, Inc. Riverwoods, IL. Available at: http://online.lexi.com. Accessed February 25, 2019.
- 11. Information Regarding Insulin Storage and Switching Between Products in an Emergency. US Food and Drug Administration. https://www.fda.gov/drugs/emergencypreparedness/ucm085213.htm. Updated September 19, 2017. Accessed February 26, 2019.
- 12. Humulin® R U-500 [package insert]. Indianapolis, IN: Eli Lilly and Company; 2018.
- 13. Standards of Medical Care in Diabetes 2019. Diabetes Care. 2019 Jan; 42 (Supplement 1): S1-S193. http://care.diabetesjournals.org/content/diacare/suppl/2018/12/17/42.Supplement_1.DC1/DC_42_S1_Combined_FINAL.pdf
- 14. Cryer P. Hypoglycemia in adults with diabetes mellitus. http://www.uptodate.com/contents/hypoglycemia-in-adults-with-diabetes-mellitus?search=tube+feeds+and+insulin&topicRef=1770&source=related_link. Updated Jan 2019. Accessed Feb 27, 2019.
- 15. Standards of Medical Care in Diabetes 2019. Diabetes Care. 2019 Jan; 42 (Supplement 1): S1-S193. http://care.diabetesjournals.org/content/diacare/suppl/2018/12/17/42.Supplement_1.DC1/DC_42_S1_Combined_FINAL.pdf
- 16. Cryer P. Hypoglycemia in adults with diabetes mellitus. http://www.uptodate.com/contents/hypoglycemia-in-adults-with-diabetes-mellitus?search=tube+feeds+and+insulin&topicRef=1770&source=related_link. Updated Jan 2019. Accessed Feb 27, 2019.
- 17. Adult Hypoglycemia Procedure. Northwell Health. Date.
- 18. McCulloch D, Inzucchi S. Management of diabetes mellitus in hospitalized patients. UpToDate. Updated Aug 2017. Accessed Feb 27, 2019. http://www.uptodate.com/contents/management-of-diabetes-mellitus-in-hospitalized patients?search=hyperglycemia+inpatient&source=search_result&selected Title=1~150
- 19. Handelsman Y, Bloomgarden Z, Grunberger G, et al. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY CLINICAL PRACTICE GUIDELINES FOR DEVELOPING A DIABETES MELLITUS COMPREHENSIVE CARE PLAN 2015. ENDOCRINE PRACTICE Vol 21 (Suppl 1) April 2015
- 20. Cook CB, Beer KA, Seifert KM, Boyle ME, Mackey PA, Castro JC. Transitioning insulin pump therapy from the outpatient to the inpatient setting: a review of 6 years' experience with 253 cases. J Diabetes Sci Technol. 2012;6(5):995-1002.
- 21. Perez A, Jansen-chaparro S, Saigi I, Bernal-lopez MR, Miñambres I, Gomez-huelgas R. Glucocorticoid-induced hyperglycemia. J Diabetes. 2014;6(1):9-20. http://www.diabetesforecast.org/2019/02-mar-apr/keys-to-choosing-a-cgm.html
- 22. Guardian Connect CGM System [image]. Medtronic. Available at: https://www.medtronicdiabetes.com/products/guardian-connect-continuous-glucose-monitoring-system. Published 2019. Accessed February 28, 2019.

References

- 23. FreeStyle Libre [image]. Abbott; 2019. Available at: https://www.freestylelibre.us/. Published 2019. Accessed 28 Feb. 2019.
- 24. Eversense [image]. Senseonics; 2019. Available at: https://www.eversensediabetes.com. Published 2019. Accessed 28 Feb. 2019.
- 25. Dexcom G6: Continuous Glucose Monitor [image]. Dexcom; 2019. https://www.dexcom.com/g6-cgm-system. Published 2019. Accessed February 28, 2019.
- 26. Klonoff DC, Buckingham B, Christiansen JS, et al. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2011;96(10):2968-79.
- 27. Gomez AM, Umpierrez GE. Continuous glucose monitoring in insulin-treated patients in non-ICU settings. J Diabetes Sci Technol 2014;8: 930–936
- 28. Krinsley JS, Chase JG, Gunst J, et al. Continuous glucose monitoring in the ICU: clinical considerations and consensus. Crit Care 2017;21:197
- 29. Wallia A. Umpierrez GE. Rushakoff RJ. et al. Consensus Statement on Inpatient Use of Continuous Glucose Monitoring. J Diabetes Sci Technol. 2017;11(5):1036-1044.
- 30. Preiser JC, Chase JG, Hovorka R, et al. Glucose Control in the ICU: A Continuing Story. J Diabetes Sci Technol. 2016;10(6):1372-1381.
- 31. Omnipod Insulin Management System [image]. Insulet. Available at: https://www.myomnipod.com/en-gb/about-insulet. Published 2019. Accessed February 28, 2019.
- 32. Medtronic MiniMed 630G Insulin Pump System. CCS Medical. Available at: https://ccsmed.com/products/insulin-pump-supplies/medtronic-minimed-630g. Published 2019. Accessed February 28, 2019.
- 33. MiniMed 670G Insulin Pump System [image]. Medtronic. Available at: https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system. Published 2019. Accessed February 28, 2019.
- 34. T-slim X2 Insulin Pump with Dexcom G6 [image]. https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump. Published 2018. Accessed February 28, 2019.
- 35. V-go[image]. Valeritas, Inc. Available at: https://www.valeritas.com/Home/default.aspx. Published 2019. Accessed February 28, 2019
- 36. Insulin Pump: Self-Management of Continuous Subcutaneous Insulin Infusion (CSII) of All Patients. Northwell Health. Approved: May 24, 2016. Accessed: March 4, 2019
- 37. Lansang C. Best Practices for Inpatient Insulin Pump Use. Cleveland Clinic, https://consultgd. clevelandclinic.org/best-practices-inpatient-insulin-pump-use/. Published: April 19. 2016. Accessed: Feb 28, 2019.
- 38. Hypoglycemia Guidelines for the Management for Inpatient Adult Non-Pregnant Patients and Pregnant Patients of any age with Diabetes, Northwell Health, Approved: February, 19 2015. Accessed: February 22, 2019.
- 39. Documentation of Hypoglycemia Treatment Protocol. AACE Diabetes Resource Center.
 - http://inpatient.aace.com/sites/all/files/UPMC Hypoglycemia Treatment Protocol Documentation-jan2011.pdf. Updated: January 18, 2011. Accessed: March 4, 2019.
- 40. Adult Peri-Operative Glucose Screening and Management. Northwell Health. Approved: June 21, 2018. Accessed: March 4, 2019.
- 41. Pre-operative Instructions for Patients with Diabetes. American Association of Clinical Endocrinology: Protocols and order sets. http://inpatient.aace.com/sites/all/files/Pre-Operative Instructions for Patients with Diabetes.pdf. Accessed: March 4, 2019.
- 42. Jornsay D. Patients' Own Diabetes Devices—To Wear or Not to Wear? Webcast Presented at: American Diabetes Association's 78th Scientific Sessions; June 24, 2018; Orlando,
- 43. Nassar AA, Boyle ME, Seifert KM, et al. Insulin pump therapy in patients with diabetes undergoing surgery. Endocr Pract. 2012;18(1):49-55.
- 44. Sobel S, Augustine M, et al. Safety and Efficacy of a Peri-operative protocol for patient with diabetes treated with continuous subcutaneous insulin infusion who are admitted for same day surgery. Endocrine Practice 2015 21:11, 1269-1276
- 45. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009;360:1283–1297
- 46. Schneider M. Confused Pharmacist [graphic]; 2019
- 47. Schneider M. Pitfall 1 [graphic]; 2019
- 48. Schneider M. Pitfall 2 [graphic]; 2019
- 49. Schneider M. Pharmacist Saves Patient From Pitfall [graphic]; 2019
- 50. Nau K, et al. Glycemic Control in Hospitalized Patients Not in Intensive Care: Beyond Sliding-Scale Insulin. Am Fam Physician. 2010;81(9):1130-1135 51. Kodner C, et al. Glucose Management in Hospitalized Patients. Am Fam Physician. 2017 Nov 15;96(10):648-654. 52. Training [photo]. Circle of Care; 2019. https://cocteam.org/training/
- CLONG Island Jewish Medical Center Northwell Health