IMPACT OF DRUG SHORTAGES ON MEDICATION SAFETY

August 20, 2019
Emily Messing, PharmD, BCPS
emessing@montefiore.org
Clinical Pharmacy Manager
Montefiore Medical Center
OBJECTIVES

• Discuss drug shortage patterns over the last decade
• Compare top medication classes involved in shortages
• Assess impact of drug shortages on patient safety and hospital resources
• Review recommendations on managing drug shortages
Drug shortage:

- “A supply issue that affects how the pharmacy prepares or dispenses a drug product or influences patient care when prescribers must use an alternative agent” (ASHP)

- “A period of time when the demand or projected demand for a medically necessary drug in the United States exceeds its supply” (FDA)

Resolved drug shortage:

- “When all suppliers either have all products back in stock, or have discontinued those products” (ASHP)
WHO DO SHORTAGES IMPACT?

- Pharmacists
- Pharmacy technicians
- Buyers
- Nurses
- Doctors
- IT
- Patients

List is not comprehensive
CAUSES OF DRUG SHORTAGES

Causes:

• Natural disasters
• Lack of available raw or bulk material
• Manufacturing difficulties
• Regulatory issues or recalls of affected or related products
• Changes in product formulations
• Superficial shortages

CAUSES OF DRUG SHORTAGES

Causes:
- Natural disasters
- Lack of available raw or bulk material
- Manufacturing difficulties
- Regulatory issues or recalls of affected or related products
- Changes in product formulations
- Superficial shortages

NATIONAL DRUG SHORTAGES
NUMBER OF NEW DRUG SHORTAGES

January 2001 to June 30, 2019

- Injectable
- Non-injectable

Active Shortages June 30, 2019

- Antimicrobials: 22 (16 injectable, 16 non-injectable)
- Chemotherapy: 15 (1 injectable, 14 non-injectable)
- Cardiovascular: 12 (17 injectable, 5 non-injectable)
- CNS: 23 (28 injectable, 5 non-injectable)
- E-Lytes, Nutrition, Fluids: 24 (4 injectable, 20 non-injectable)

The Impact of Anti-infective Drug Shortages on Hospitals in the United States: Trends and Causes

Milena M. Griffith,1,2,3 Alan E. Gross,1,2,3 Sarah H. Sutton,3,4 Maureen K. Bolon,3,4 John S. Esterly,2,3,5 Jean A. Patel,2,3 Michael J. Postelnick,2,3 Teresa R. Zembower,3,4 and Marc H. Scheetz1,2,3

1Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois; 2Department of Pharmacy and Antimicrobial Stewardship Program, Northwestern Memorial Hospital, 4Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, and 5Department of Pharmacy Practice, Chicago State University College of Pharmacy, Illinois
<table>
<thead>
<tr>
<th>Drug (Date of Shortage Onset)</th>
<th>Reason for Shortage</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir injection (2010)</td>
<td>Manufacturing issues</td>
<td>Only therapy recommended for HSV/VZV encephalitis</td>
</tr>
<tr>
<td>Aztreonam injection (2008)</td>
<td>Raw material shortage</td>
<td>First-line agent for patients with b-lactam allergy who required gram-negative b-lactam coverage</td>
</tr>
<tr>
<td>Ciprofloxacin injection</td>
<td>Raw material shortage; noncompliance with GMPs</td>
<td>Empiric therapy selection in many national guidelines for a variety of infections</td>
</tr>
<tr>
<td>Piperacillin-tazobactam injection (2005)</td>
<td>Manufacturing issues; formulation change; increased demand; natural disaster</td>
<td>First-line anti-infective for many serious nosocomial infections</td>
</tr>
<tr>
<td>Polymyxin B injection (2008)</td>
<td>Increased demand</td>
<td>Often last-line therapy for serious multidrug-resistant gram-negative infection</td>
</tr>
<tr>
<td>Sulfamethoxazole-trimethoprim (2010)</td>
<td>Manufacturing issues</td>
<td>First-line treatment for Pneumocystis jiroveci pneumonia and Stenotrophomonas maltophilia infections</td>
</tr>
</tbody>
</table>

The Shortage of Essential Chemotherapy Drugs in the United States

Mandy L. Gatesman, Pharm.D., and Thomas J. Smith, M.D.

For the first time in the United States, some essential chemotherapy drugs are in short supply. Most are generic drugs that have been used for years in childhood leukemia and curable cancers —

the increased time and work required to manage drug shortages.² A gray market for essential drugs — an unofficial alternative market of drugs obtained by vendors outside the usual distribution net-
MECHLORETHAMINE VS. CYCLOPHOSPHAMIDE

EFFECT OF ONCOLOGY DRUG SHORTAGES

National survey on the effect of oncology drug shortages on cancer care

Ali McBride, Lisa M. Holle, Colleen Westendorf, Margaret Sidebottom, Niesha Griffith, Raymond J. Muller, and James M. Hoffman

- 34-question survey from September-October 2011 sponsored by HOPA
- Confirmed that oncology drug shortages occurred frequently in 2011
 - Delays and changes in chemotherapy regimens occurred frequently
 - Shortages are resulting in increased costs
 - Near-misses or actual medication errors as a result of shortages was reported by respondents

Medication Errors and Shortage-Associated Adverse Outcomes, as Reported by Survey Respondents

<table>
<thead>
<tr>
<th>Event</th>
<th>No. (%) Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-miss medication error (n = 39)</td>
<td></td>
</tr>
<tr>
<td>Wrong drug</td>
<td>11 (28)</td>
</tr>
<tr>
<td>Wrong dosage conversion</td>
<td>10 (26)</td>
</tr>
<tr>
<td>Wrong drug concentration</td>
<td>8 (21)</td>
</tr>
<tr>
<td>Delayed or omitted drug</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Inadequate supply to prepare dose</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Details unknown</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Medication error that reached a pt (n = 15)</td>
<td></td>
</tr>
<tr>
<td>Wrong drug</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Wrong dosage conversion</td>
<td>7 (47)</td>
</tr>
<tr>
<td>Wrong drug concentration</td>
<td>3 (20)</td>
</tr>
<tr>
<td>Delayed or omitted drug</td>
<td>1 (7)</td>
</tr>
<tr>
<td>Extra dose</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Adverse pt outcome (n = 40)</td>
<td></td>
</tr>
<tr>
<td>Increased toxicity</td>
<td>20 (50)</td>
</tr>
<tr>
<td>Disease progression</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Cardiac event</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Emotional stress</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Details not disclosed</td>
<td>11 (28)</td>
</tr>
</tbody>
</table>

For each item, percentage denotes proportion of respondents who reported and provided details on event.
EFFECT OF ONCOLOGY DRUG SHORTAGES

Effects of Selected Chemotherapy Shortages on Patient Care, as Reported by Survey Respondents

(n = 243)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Metastatic Ovarian Cancer (Liposomal Doxorubicin)</th>
<th>Breast Cancer (Paclitaxel)</th>
<th>Colorectal Cancer (Fluorouracil)</th>
<th>AML (Cytarabine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed to another regimen</td>
<td>84 (34)<sup>b</sup></td>
<td>49 (20)<sup>c</sup></td>
<td>78 (32)<sup>d</sup></td>
<td>29 (12)<sup>e</sup></td>
</tr>
<tr>
<td>Sent patient to another institution for treatment</td>
<td>16 (7)</td>
<td>8 (3)</td>
<td>4 (2)</td>
<td>25 (10)</td>
</tr>
<tr>
<td>Omitted drug without substitution</td>
<td>42 (17)</td>
<td>12 (5)</td>
<td>18 (7)</td>
<td>12 (5)</td>
</tr>
<tr>
<td>Converted to another form of drug for treatment</td>
<td>66 (27)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Reduced dosage of drug for treatment</td>
<td>NA</td>
<td>9 (4)</td>
<td>23 (9)</td>
<td>28 (12)</td>
</tr>
<tr>
<td>Obtained drug from another institution</td>
<td>18 (7)</td>
<td>28 (12)</td>
<td>19 (8)</td>
<td>40 (16)</td>
</tr>
<tr>
<td>Obtained drug, no effect on practice</td>
<td>30 (12)</td>
<td>138 (57)</td>
<td>131 (54)</td>
<td>113 (47)</td>
</tr>
<tr>
<td>Unknown or did not treat</td>
<td>63 (26)</td>
<td>36 (15)</td>
<td>25 (10)</td>
<td>54 (22)</td>
</tr>
</tbody>
</table>

Shortage of Perioperative Drugs: Implications for Anesthesia Practice and Patient Safety

Gildasio S. De Oliveira, Jr., MD, Luke S. Theilken, MD, and Robert J. McCarthy, PharmD

Several medications used in clinical perioperative medicine are currently cited on the national shortage list. Medication shortages may be attributed to lack of raw materials, manufacturing issues, and discontinuation of production. Medication shortage has a substantial impact on patient care, and is responsible for creating an environment conducive to an increase in medication errors. Anesthesiologists should be taking an active role with the pharmacy and hospital management to alert caregivers and help to prevent adverse effects on patient care and safety. (Anesth Analg 2011;113:1429–35)
SHORTAGES: CNS MEDICATIONS

Table 1. Intravenous Drug Shortages Affecting Anesthesia Practice in 2010

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Drug shortage resolved (yes/no)</th>
<th>Major cause for the shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypnotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propofol</td>
<td>No</td>
<td>Manufacturer recall</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Yes</td>
<td>Increased demand</td>
</tr>
<tr>
<td>Etomidate</td>
<td>Yes</td>
<td>Increased demand</td>
</tr>
<tr>
<td>Thiopental</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midazolam</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Diazepam</td>
<td>No</td>
<td>No reason provided</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Opioids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphine</td>
<td>No</td>
<td>Increased demand</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>No</td>
<td>Increased demand</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Nalbuphine</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Meperidine</td>
<td>No</td>
<td>No reason provided</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinylcholine</td>
<td>No</td>
<td>No reason provided</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>No</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>No</td>
<td>Manufacturer recall</td>
</tr>
<tr>
<td>Atracurium</td>
<td>Yes</td>
<td>No reason provided</td>
</tr>
<tr>
<td>Cisatracurium</td>
<td>Yes</td>
<td>Manufacturing issues</td>
</tr>
<tr>
<td>Opioid antagonist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naloxone</td>
<td>No</td>
<td>Manufacturer discontinuation</td>
</tr>
</tbody>
</table>

Table 3. Type of Medication Errors Attributed to Medication Shortages Between 2004 and 2005

<table>
<thead>
<tr>
<th>Type of error</th>
<th>No. of cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribing error</td>
<td>271</td>
<td>34.1</td>
</tr>
<tr>
<td>Improper dose/quantity</td>
<td>204</td>
<td>25.7</td>
</tr>
<tr>
<td>Omission error</td>
<td>176</td>
<td>22.2</td>
</tr>
<tr>
<td>Wrong administration timing</td>
<td>84</td>
<td>10.6</td>
</tr>
<tr>
<td>Unauthorized/wrong medication</td>
<td>47</td>
<td>5.9</td>
</tr>
<tr>
<td>Wrong drug preparation</td>
<td>43</td>
<td>5.4</td>
</tr>
<tr>
<td>Wrong dosage form</td>
<td>21</td>
<td>2.6</td>
</tr>
<tr>
<td>Expired product</td>
<td>15</td>
<td>1.9</td>
</tr>
<tr>
<td>Extra dose</td>
<td>11</td>
<td>1.4</td>
</tr>
<tr>
<td>Wrong patient</td>
<td>9</td>
<td>1.1</td>
</tr>
<tr>
<td>Wrong route</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>Deteriorated product</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>Wrong administration technique</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table was reproduced from Quantros MEDMARXSM (http://www.quantros.com/medmarx.htm). Copyright permission to reproduce the table was obtained.
Statement by FDA Commissioner Scott Gottlieb, M.D., on efforts to address impact of IV fluid shortages following hurricane destruction and resolve manufacturing shortfalls

- temporarily allowing the importation of IV saline products from facilities outside of the U.S.;
- encouraging the expansion of production at existing facilities to meet shortfalls; and
- expediting our review of new product applications that will help address this shortage.
DRUG SHORTAGES IN THE HOSPITAL
Drug Shortages: A Complex Health Care Crisis

Erin R. Fox, PharmD; Burgunda V. Sweet, PharmD; and Valerie Jensen, RPh

Abstract

National tracking of drug shortages began in 2001. However, a significant increase in the number of shortages began in late 2009, with numbers reaching what many have termed crisis level. The typical drug in short supply is a generic product administered by injection. Common classes of drugs affected by shortages include anesthesia medications, antibiotics, pain medications, nutrition and electrolyte products, and chemotherapy agents. The economic and clinical effects of drug shortages are significant. The financial effect of drug shortages is estimated to be hundreds of millions of dollars annually for health systems across the United States. Clinically, patients have been harmed by the lack of drugs or inferior alternatives, resulting in more than 15 documented deaths. Drug shortages occur for a variety of reasons. Generic injectable drugs are particularly susceptible to drug shortages because there are few manufacturers of these products and all manufacturers are running at full capacity. In addition, some manufacturers have had production problems, resulting in poor quality product. Although many suppliers are working to upgrade facilities and add additional manufacturing lines, these activities take time. A number of stakeholder organizations have been involved in meetings to further determine the causes and effects of drug shortages. A new law was enacted in July 2012 that granted the Food and Drug Administration additional tools to address the drug shortage crisis. The future of drug shortages is unknown, but there are hopeful indications that quality improvements and additional capacity may decrease the number of drug shortages in the years to come.
DRUG SHORTAGES IN HOSPITAL

- Particularly complex
- Treating patients with acute and/or emergency conditions
- Use a significant number of medically necessary or single-source products
- **Goal**: provide safe and therapeutically equivalent drug therapy preferably at comparable costs
- Without standardized protocols for allocating limited supply of a medication →
 - Susceptible to arbitrary judgements → revealing preformed bias
 - Medication errors
DRUG SHORTAGES IN HOSPITAL

- Particularly complex
- Treating patients with acute and/or emergency conditions
- Use a significant number of medically necessary or single-source products

Goal: provide safe and therapeutically equivalent drug therapy preferably at comparable costs

- Without standardized protocols for allocating limited supply of a medication →
 - Susceptible to arbitrary judgements → revealing preformed bias

- *Medication errors*
IMPACT OF DRUG SHORTAGES ON MEDICATION SAFETY
PATIENT SAFETY

- Medication errors are more likely to occur when
 - Pharmacy alters how a product is ordered, prepared, or dispensed
 - When prescribing practices change to less-familiar alternative agents
 - Less efficacious, worse adverse effect profile, require unusual or difficult dosing regimen
• National survey from August-October 2017
• Confirmed that drug shortages continue to be a daily struggle
 • Lifesaving drugs without viable alternatives
 • Shortages lasting longer
 • Unsafe practices, compromised care, harmful errors

ISMP: ADVERSE PATIENT OUTCOMES

- Majority felt that drug shortages compromised patient care
- 71% were unable to provide patients with recommended drug/treatment for their condition because of shortage
 - 47% reported that this resulted in patients receiving less effective drug
- 75% reported patient treatment delays
- 5% reported other types of adverse outcomes
- 21% were aware of at least one medication error related to drug shortage in the 6 months prior to the survey

ISMP: ADVERSE IMPACT ON ORGANIZATIONAL RESOURCES

• Not directly queried in survey
• More than 33% of respondents provided comments
 • Unsafe practices that increased risk of error
 • Extensive human and financial resources required to manage drug shortages
 • Needed full-time staff to manage drug shortages
 • Time spent managing shortages cut into patient care

ISMP: ADVERSE IMPACT ON ORGANIZATIONAL RESOURCES

• Not directly queried in survey
• More than 33% of respondents provided comments
 • Unsafe practices that increased risk of error
 • Extensive human and financial resources required to manage drug shortages
 • Needed full-time staff to manage drug shortages
 • Time spent managing shortages cut into patient care

ISMP: ADVERSE IMPACT ON ORGANIZATIONAL RESOURCES

Examples of unsafe practices:

- Dispensing medications in vials to patient care units so they can be prepared and administered via IV push administration
- Administering IV push medications rapidly when they should be administered more slowly via a syringe pump
- Diluting or reconstituting medications in saline flush syringes on patient care units due to shortages of normal saline
- Compounding products in the pharmacy and in the operating room that were previously available as premixed solutions or injectables
- Providing medications in concentrations that differ from what was typically used for direct injectables

RESOURCES NEEDED TO MANAGE DRUG SHORTAGES
ISMP: ADVERSE IMPACT ON ORGANIZATIONAL RESOURCES

• Not directly queried in survey
• More than 33% of respondents provided comments
 • Unsafe practices that increased risk of error
 • **Extensive human** and financial resources required to manage drug shortages
 • Needed **full-time staff** to manage drug shortages
 • **Time spent managing shortages cut into patient care**

Time Spent Managing Shortages

<table>
<thead>
<tr>
<th>Hospital Characteristic</th>
<th>Pharmacists</th>
<th>Pharmacy Technicians</th>
<th>Physicians</th>
<th>Nurses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>9 (5–20)</td>
<td>8 (3–17)</td>
<td>0.5 (0–2)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>Size (no. beds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><100 (n = 87)</td>
<td>8 (5–12.5)</td>
<td>5 (2–11)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>100–199 (n = 54)</td>
<td>9 (5–19.75)</td>
<td>9 (3–17.5)</td>
<td>0.5 (0–2.25)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>200–399 (n = 79)</td>
<td>9 (5–27.5)</td>
<td>10 (5–20)</td>
<td>1 (0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>≥400 (n = 54)</td>
<td>12 (8–28.5)</td>
<td>13 (6–21)</td>
<td>1 (0–4)</td>
<td>1 (0–4.5)</td>
</tr>
<tr>
<td>p</td>
<td>0.028</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.003</td>
</tr>
<tr>
<td>No. shortages experienced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 (n = 36)</td>
<td>4.5 (2.25–10)</td>
<td>2.75 (0.5875–6)</td>
<td>0 (0–0.5)</td>
<td>0 (0–0.875)</td>
</tr>
<tr>
<td>10–20 (n = 116)</td>
<td>8 (4.25–20)</td>
<td>6 (2.25–12)</td>
<td>0 (0–1)</td>
<td>0 (0–1.5)</td>
</tr>
<tr>
<td>21–30 (n = 84)</td>
<td>11 (5.75–26)</td>
<td>10 (5–21)</td>
<td>1 (0–3.5)</td>
<td>1 (0–2.75)</td>
</tr>
<tr>
<td>≥30 (n = 95)</td>
<td>10.5 (6.12–23.75)</td>
<td>13 (6–21.5)</td>
<td>1 (0–2.75)</td>
<td>0.125 (0–2)</td>
</tr>
<tr>
<td>p</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.034</td>
</tr>
<tr>
<td>Level of automation (no. automated systems present)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (n = 53)</td>
<td>4.5 (1.13–22.5)</td>
<td>1.63 (0–22.25)</td>
<td>0 (0–1.25)</td>
<td>0 (0–2.5)</td>
</tr>
<tr>
<td>1–4 (n = 74)</td>
<td>7 (4.5–17)</td>
<td>5 (2–10)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>5–8 (n = 115)</td>
<td>10 (5–19.25)</td>
<td>8.5 (3.25–15.75)</td>
<td>0.5 (0–2)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>9–12 (n = 92)</td>
<td>10 (5–26.5)</td>
<td>12 (5–21)</td>
<td>1 (0–2.5)</td>
<td>1 (0–3.5)</td>
</tr>
<tr>
<td>13–16 (n = 19)</td>
<td>14.29 (9.5–28.5)</td>
<td>14 (6.5–18.25)</td>
<td>1 (0–5)</td>
<td>0 (0–3.25)</td>
</tr>
<tr>
<td>p</td>
<td>0.024</td>
<td><0.001</td>
<td>0.002</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Kruskal–Wallis analysis for association between time spent managing shortages and increasing bed capacity, number of shortages, and level of automation.

Time Spent Managing Shortages

<table>
<thead>
<tr>
<th>Hospital Characteristic</th>
<th>Pharmacists</th>
<th>Pharmacy Technicians</th>
<th>Physicians</th>
<th>Nurses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>9 (5–20)</td>
<td>8 (3–17)</td>
<td>0.5 (0–2)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>Size (no. beds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><100 (n = 87)</td>
<td>8 (5–12.5)</td>
<td>5 (2–11)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>100–199 (n = 54)</td>
<td>9 (5–19.75)</td>
<td>9 (3–17.5)</td>
<td>0.5 (0–2.25)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>200–399 (n = 20)</td>
<td>9 (5–19.75)</td>
<td>10 (5–20)</td>
<td>1 (0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>≥400 (n = 64)</td>
<td>12 (8–28.5)</td>
<td>13 (6–21)</td>
<td>1 (0–4)</td>
<td>1 (0–4.5)</td>
</tr>
<tr>
<td>p<sup>*</sup></td>
<td>0.028</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.003</td>
</tr>
<tr>
<td>No. shortages experienced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 (n = 36)</td>
<td>4.5 (2.25–10)</td>
<td>2.75 (0.5875–6)</td>
<td>0 (0–0.5)</td>
<td>0 (0–0.875)</td>
</tr>
<tr>
<td>10–20 (n = 116)</td>
<td>8 (4.25–20)</td>
<td>6 (2.25–12)</td>
<td>0 (0–1)</td>
<td>0 (0–1.5)</td>
</tr>
<tr>
<td>21–30 (n = 84)</td>
<td>11 (5.75–26)</td>
<td>10 (5–21)</td>
<td>1 (0–3.5)</td>
<td>1 (0–2.75)</td>
</tr>
<tr>
<td>≥30 (n = 95)</td>
<td>10 (6.12–23.75)</td>
<td>13 (6–21.5)</td>
<td>1 (0–2.75)</td>
<td>0.125 (0–2)</td>
</tr>
<tr>
<td>p<sup>*</sup></td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.034</td>
</tr>
<tr>
<td>Level of automation (no. automated systems present)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (n = 53)</td>
<td>4.5 (1.13–22.5)</td>
<td>1.63 (0–22.25)</td>
<td>0 (0–1.25)</td>
<td>0 (0–2.5)</td>
</tr>
<tr>
<td>1–4 (n = 74)</td>
<td>7 (4.5–17)</td>
<td>5 (2–10)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>5–8 (n = 115)</td>
<td>10 (5–19.25)</td>
<td>8.5 (3.25–15.75)</td>
<td>0.5 (0–2)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>p<sup>*</sup></td>
<td>0.024</td>
<td><0.001</td>
<td>0.002</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Kruskal–Wallis analysis for association between time spent managing shortages and increasing bed capacity, number of shortages, and level of automation.

• Not directly queried in survey
• More than 33% of respondents provided comments
 • Unsafe practices that increased risk of error
 • Extensive human and financial resources required to manage drug shortages
 • Needed full-time staff to manage drug shortages
• Time spent managing shortages cut into patient care

ESTIMATED COST OF SHORTAGES

- Estimated cost of shortages in 2013: $209 million
- Cost of purchasing more expensive substitutes
- Excludes other costs
 - Managing multiple pharmacy automation systems

Average Wholesale Prices (AWPs) of Selected Oncology Drugs in Short Supply and Their Potential Alternatives.

<table>
<thead>
<tr>
<th>Shortage Drug</th>
<th>AWP per Dose</th>
<th>Alternative Drug</th>
<th>AWP per Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel (breast, lung, ovarian cancer)</td>
<td>312</td>
<td>Docetaxel (Taxotere)</td>
<td>3,519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paclitaxel, protein-bound (Abraxane)</td>
<td>5,824</td>
</tr>
<tr>
<td>Leucovorin (pediatric cancers, colon cancer)</td>
<td>32</td>
<td>Levoleucovorin (Fusilev)</td>
<td>1,284</td>
</tr>
<tr>
<td>Doxorubicin (breast and ovarian cancers, leukemia)</td>
<td>120</td>
<td>Epirubicin</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liposomal doxorubicin (Doxil)</td>
<td>5,789</td>
</tr>
</tbody>
</table>
Figure 1. Observed increases in WACs in the 12 mo before and after the shortage began.

- Drugs supplied by ≤3 manufacturers
- Drugs supplied by >3 manufacturers
- All drugs

POSITIVES OF DRUG SHORTAGES?
POSSIBLE POSITIVE OUTCOMES

- IV to PO programs
- Less waste
 - IV push
 - Standardized concentrations
 - Lowering PAR levels
- Cost savings?
LEGISLATION: WHAT HAS BEEN DONE TO COMBAT DRUG SHORTAGES?
2011: Preserving Access to Life-Saving Medications Act
2012: FDA Safety and Innovation Act (FDASIA)
2013: FDA’s Strategic Plan released
2017: FDA Drug Round Table
2018: FDA Shortages Summit
• Requires a prescription drug manufacturer to notify the Secretary of Health and Human Services (HHS) of:
 • A discontinuance, interruption or other adjustment of the manufacture of a drug that would likely result in a shortage of such drug
FOOD AND DRUG SAFETY AND INNOVATION ACT OF 2012

- Industry required to supply information to the FDA
- Wholesalers voluntarily supply inventory interruptions
- Public notification via email

Who is not required to report supply data?
- Repackagers
- Secondary wholesalers/distributers
- Compounders
Strategic Plan for Preventing and Mitigating Drug Shortages

Executive Summary

On July 9, 2012, the President signed into law the Food and Drug Administration Safety and Innovation Act (FDASIA). Among other things, Title X of FDASIA directs the Food and Drug Administration (FDA or the Agency) to establish a task force on drug shortages to develop and submit to Congress a Strategic Plan to enhance FDA’s response to preventing and mitigating drug shortages.
• (1) examining drug shortages over the past five years and assessing what has worked in terms of preventing and mitigating shortages as well as what could be improved

• (2) whether there have been notable changes in the causes of drug shortages, in the trends in the types of shortages, or in the marketplace dynamics that impact supply
The Task Force

In July 2018, FDA Commissioner Scott Gottlieb, M.D. established the Agency Drug Shortages Task Force to identify the root causes of drug shortages and advance potential long-term solutions in a report to Congress.

Stakeholder Participation

In response to strong stakeholder interest, the task force is providing three ways for stakeholders to participate:

- **Public Meeting.** The task force, under a cooperative agreement with the Robert J. Margolis, MD, Center for Health Policy at Duke University, will host a public meeting on November 27, 2018, in Washington, D.C. Dr. Mark McClellan, Director of the Duke-Margolis Center and former FDA Commissioner and CMS Administrator, will moderate the meeting. The agenda will include opportunities for open discussion and audience participation.

- **Stakeholder Listening Sessions.** The task force held a series of stakeholder listening sessions in September and October 2018. Due to resource constraints, participation was by “invitation only.” The sessions brought together small groups of nationally recognized experts on the drug supply chain and leaders of organizations representing broad segments of the health care system.

- **Public Docket.** FDA has opened a docket to receive comments from stakeholders about the root causes of drug shortages and potential enduring solutions. The docket will remain open until January 11, 2019, to provide ample time for contributions.
ROLE OF PHARMACY IN MANAGING SHORTAGES

• Ensure organization has the necessary infrastructure and well-defined management strategy in place before a shortage occurs

• Provide education to all members of the healthcare team and organizational leadership

• Communication
 • Informing practitioners of shortages and providing recommendations on alternative agents

• Ensure safe and effective use of therapeutic alternatives

• Restrictions, allocations, alternatives
DECISION-MAKING MANAGEMENT OF SHORTAGES

Drug shortage identified

Operational assessment
1. Validate details of shortage
2. Determine stock on hand
3. Determine supply from predetermined alternative sources
4. Determine purchase history and/or true use history
5. Estimate time to impact on the healthcare organization
6. Determine supply of alternative drug products
 (Typically done by the pharmacy department)

Therapeutic assessment
1. Identify primary patient population affected
2. Identify therapeutic alternatives
 (May be done by pharmacists or interdisciplinary team)

Shortage impact analysis
1. Therapeutic differences
2. Prescribing processes
3. Distribution processes
4. Administration processes
5. Financial ramifications
 (May be done by pharmacy or interdisciplinary team)

Establish final plan

Communicate
1. Shortage
2. Effective date
3. Identified therapeutic alternative
4. Temporary guidelines
5. Temporary procedures

Implement
1. Information system changes
2. Technological changes (i.e., bar coding)
3. Inventory system changes
4. New procedures

DECISION-MAKING MANAGEMENT OF SHORTAGES

Drug shortage identified

- **Operational assessment**
 1. Validate details of shortage
 2. Determine stock on hand
 3. Determine supply from predetermined alternative sources
 4. Determine purchase history and/or true use history
 5. Estimate time to impact on the healthcare organization
 6. Determine supply of alternative drug products
 (Typically done by the pharmacy department)

- **Therapeutic assessment**
 1. Identify primary patient population affected
 2. Identify therapeutic alternatives
 (May be done by pharmacists or interdisciplinary team)

- **Shortage impact analysis**
 - Estimate impact on patient care
 1. Therapeutic differences
 2. Prescribing processes
 3. Distribution processes
 4. Administration processes
 5. Financial ramifications
 (May be done by pharmacy or interdisciplinary team)

- **Establish final plan**

- **Communicate**
 1. Shortage
 2. Effective date
 3. Identified therapeutic alternative
 4. Temporary guidelines
 5. Temporary procedures

- **Implement**
 1. Information system changes
 2. Technological changes (i.e., bar coding)
 3. Inventory system changes
 4. New procedures

DECISION-MAKING MANAGEMENT OF SHORTAGES

Drug shortage identified

Operational assessment
1. Validate details of shortage
2. Determine stock on hand
3. Determine supply from predetermined alternative sources
4. Determine purchase history and/or true use history
5. Estimate time to impact on the healthcare organization
6. Determine supply of alternative drug products
 (Typically done by the pharmacy department)

Therapeutic assessment
1. Identify primary patient population affected
2. Identify therapeutic alternatives
 (May be done by pharmacists or interdisciplinary team)

Therapeutic assessment

Shortage impact analysis
1. Therapeutic differences
2. Prescribing processes
3. Distribution processes
4. Administration processes
5. Financial ramifications
 (May be done by pharmacy or interdisciplinary team)

Establish final plan

Communicate
1. Shortage
2. Effective date
3. Identified therapeutic alternative
4. Temporary guidelines
5. Temporary procedures

Implement
1. Information system changes
2. Technological changes (i.e., bar coding)
3. Inventory system changes
4. New procedures

DECISION-MAKING MANAGEMENT OF SHORTAGES

Drug shortage identified

Operational assessment
1. Validate details of shortage
2. Determine stock on hand
3. Determine supply from predetermined alternative sources
4. Determine purchase history and/or true use history
5. Estimate time to impact on the healthcare organization
6. Determine supply of alternative drug products
 (Typically done by the pharmacy department)

Therapeutic assessment
1. Identify primary patient population affected
2. Identify therapeutic alternatives
 (May be done by pharmacists or interdisciplinary team)

Shortage impact analysis
1. Therapeutic differences
2. Prescribing processes
3. Distribution processes
4. Administration processes
5. Financial ramifications
 (May be done by pharmacy or interdisciplinary team)

Establish final plan

Communicate
1. Shortage
2. Effective date
3. Identified therapeutic alternative
4. Temporary guidelines
5. Temporary procedures

Implement
1. Information system changes
2. Technological changes (i.e., bar coding)
3. Inventory system changes
4. New procedures

RESOURCES
RESOURCES

 - Report a shortage
 - List of current, discontinued, resolved shortages
 - Drug shortage database
 - List of drugs with extended use dates
REFERENCES

IMPACT OF DRUG SHORTAGES ON MEDICATION SAFETY

August 20, 2019
Emily Messing, PharmD, BCPS
emessing@montefiore.org
Clinical Pharmacy Manager
Montefiore Medical Center