COVID-19 Update from an Infectious Diseases Perspective

Patricia Saunders-Hao, PharmD, BCIDP, BCPS (AQ-ID) Clinical Pharmacy Specialist, Infectious Diseases North Shore University Hospital

May 19, 2021

Disclaimers

- No conflicts of interest to disclose
- Data/knowledge on COVID-19 constantly evolving so information presented today as current as possible

△ COVID-19 is an emerging, rapidly evolving situation	Latest public health information from CDC Latest reserved	earch information from NIH	
NIH COVID-19 Treatment Guideli	nes	Search	Q

- Too much data/information!
 - Focus will be highlights, key studies (mostly peer-reviewed), and recent updates regarding ID-related management in adults and vaccines

Objectives

- Understand how SARS-CoV-2 and the pathophysiology of COVID-19 may affect our prevention and treatment strategies
- Evaluate the role of monoclonal antibodies for COVID-19
- Discuss the current guidelines and evidence-based treatment options for hospitalized patients with COVID-19
- Review the available COVID-19 vaccines and their safety and efficacy updates

Introduction

- COVID-19 disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
 - Single-stranded RNA virus
 - Most common coronaviruses in clinical practice before this caused common colds
 - SARS-CoV-2 3^{rd} coronavirus to cause severe disease
 - Severe acute respiratory syndrome (SARS) 2002-2003
 - Middle East respiratory syndrome (MERS) 2012

WHO. https://covid19.who.int/ Accessed 5/16/21.

C	CDC 24/7: Saving Lives,	ase Control and Prevention Protecting People™	Search	Q
C	OVID Data	Tracker		
Cases in US	25,921,703	Cases in US Last 30 Days Total Vaccines Administered 31.1M Deaths in US	438,035 Deaths in US Last 30 Days	~~~
	Data Tracker Home	United States COVID-19 Cases an Maps, charts, and data provided by the CDC, updated daily by 8 pm ET^{\dagger}	id Deaths by State	
CD	Your Community Centers for Disease Con CDC 24/7: Saving Lives, Protecting P	+ TOTAL CASES AVERAGE DAILY CASES	PFR TOTAL DEATHS Search	Q
CO	VID Data Trac	ker		
Case: in US	32,753,426	Cases in US Last 30 Days One Vaccination Deaths in US	582,769 Deaths in US Last 30 Days	
I	Data Tracker Home	COVID-19 Vaccinations in the United States Overall US COVID-19 Vaccine Deliveries and Administration; Maps, charts, and data provided by CDC, up	dates daily by 8 pm ET [†]	
	COVID Data Tracker Weekly Review	Represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care fa Agency and Health Resources and Services Administration partner sites, and federal entity facilities.	cilities, dialysis centers, Federal Emergency Manageme	nt
	Your Community +	Total Vaccine Doses Total	At Least One Dose Fully Vaccinated	
	Vaccinations —	Delivered 344,503,495 % of Total Population Administered 273,545,207	47.4% 37.1%	

CDC COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker. Accessed 5/16/21.

SARS-CoV-2

Chilamakuri R, Agarwal S. Cells. 2021.

Spike protein mutations

- Mutations to RBD of spike protein may:
 - Increase affinity to ACE2 \rightarrow increased transmissibility?
 - Reduce protection from natural infection, vaccine, or monoclonal antibodies

Mutatio	ns that may help the c	oronavirus spread
Lineage	Mutation	Status
B.1	D614G	Appeared in early 2020 and spread around the world.
Several	N501Y	A defining mutation in several lineages, including B.1.1.7, B.1.351 and P.1. Helps the virus bind more tightly to human cells.
Several	E484K or "Eek"	Appears in several lineages. May help the virus avoid some kinds of antibodies.
Several	K417	Appears in several lineages, including B.1.351 and P.1. May help the virus bind more tightly to cells.
Several	L452R	Increasingly common in California, but not yet shown to be more infectious.
Several	Q677	Found in seven U.S. lineages, but not yet shown to be more infectious.

NY Times. https://www.nytimes.com/interactive/2021/health/cor onavirus-variant-tracker.html. Accessed 5/16/21.

Zhou, et al. *Cell.* 2021.

SARS-CoV-2 Variants

• CDC established classification with 3 classes of variants:

• WHO has similar classifications but may differ from US due to regional variants

United States: 1/17/2021 - 4/24/2021

Variants of concern

Lineage	Variant name	Status
B.1.1.7	Variant of Concern 202012/01, or 501Y.V1	Emerged in Britain in December and thought to be roughly 50 percent more infectious. Now dominant in the U.S.
B.1.351	501Y.V2	Emerged in South Africa in December. Reduces the effectiveness of some vaccines.
P.1	501Y.V3	Emerged in Brazil in late 2020. Has mutations similar to B.1.351.
B.1.427, B.1.429	CAL.20C	Common in California and thought to be about 20 percent more infectious. Carries the L452R mutation.

Variants of interest

Lineage	Variant name	Status
B.1.525	-	Spreading in New York. Carries some of the same mutations as B.1.1.7.
B.1.526	-	Spreading in New York. One version carries the E484K mutation, another carries S477N.
B.1.617	_	Prevalent in India. Carries the L452R spike mutation, among others.

CDC COVID Data Tracker. <u>https://covid.cdc.gov/covid-data-tracker/#variant-proportions</u>. Accessed 5/16/21. NY Times. <u>https://www.nytimes.com/interactive/2021/health/coronavirus-variant-tracker.html</u>. Accessed 5/16/21.

1	Spike Protein Substitution	National Proportion ^a	Regional Proportions ^b		Common Pango Lineages with Spike Protein Substitutions ^c
			Region 1	6.0%	
			Region 2	8.0%	B.1.526.1
			Region 3	7.6%	B.1.429
			Region 4	4.4%	B.1.427
			Region 5	6.7%	B.1.617.2
	L452R	7.6%	Region 6	4.1%	B.1.617.1
			Region 7	6.5%	B.1
			Region 8	14.5%	C.36
			Region 9	16.6%	A.2.5
			Region 10	18.0%	
			Region 1	19.5%	
			Region 2	22.8%	P.1
			Region 3	15.5%	B.1.520
			Region 4	15.106	B.1.1.318
			Region 4	10.1%	B.1.351
	E484K	15.8%	Region 5	13.1%	B.1.525
			Region 6	11.4%	R.1
			Region 7	11.8%	B.1.1
			Region 8	12.0%	B.1.621
			Region 9	15.7%	B.1
			Region 10	10.4%	B.1.1.7

Unweighted Proportions of SARS-CoV-2 Substitutions of Therapeutic Concern

a – The unweighted proportion of SARS-CoV-2 circulating in the United States that contain the designated substitution, based on >20,000 sequences collected through CDC's national genomic surveillance during the two-week period ending April 24, 2021.

b – The unweighted regional proportion of SARS-CoV-2 circulating in each HHS region that contain the designated substitution, based on >20,000 sequences collected through CDC's national genomic surveillance during the two-week period ending April 24, 2021.

c - The lineages listed are the most common lineages within CDC's national genomic surveillance with these substitutions, but this list is not intended to be a complete list of the lineages that contain the spike protein substitutions.

CDC COVID Data Tracker. <u>https://covid.cdc.gov/covid-data-tracker/#variant-proportions</u>. Accessed 5/16/21.

Variants of Interest

	B.1.526	B.1.526.1	B.1.525	P.2	B.1.617	B.1.617.1	B.1.617.2	B.1.617.3
First detected	New York	New York	UK/Nigeria	Brazil	India	India	India	India
No. of spike mutations	3-7	6-8	8	3-4	3	7-8	9-10	7
Receptor binding domain mutations	(S477N*) (E484K*)	L452R	E484K	E484K	L452R E484Q	L452R E484Q	L452R T478K	L452R E484Q
Attributes	 Reduced antibody efficacy Reduced neutralization convalescent or vaccine sera 	 Potential r antibody e Potential r neutraliza vaccine se 	reduced efficacy reduced tion by era	 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	 Potentia efficacy Potentia by vaccir 	I reduced ant I reduced neu ne sera	ibody utralization

Scobie H. ACIP meeting. May 12, 2021.

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-05-12/10-COVID-Scobie-508.pdf

Variants of Concern

	B.1.1.7	B.1.351	P.1	B.1.427	B.1.429
First detected	United Kingdom	South Africa	Japan / Brazil	California	California
No. of spike mutations	10-13	10	11	4	4
Receptor binding domain mutations	N501Y	K417N E484K N501Y	K417T E484K N501Y	L452R	L452R
Attributes	 50% increased transmission Minimal impact on neutralization by antibody therapies, convalescent or vaccine sera 	 50% increased transmission Reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 Reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 20% increased transmission Modest decrease in efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 20% increased transmission Modest decrease in efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera

SARS-CoV-2 Variants Classifications & Definitions | CDC

Scobie H. ACIP meeting. May 12, 2021.

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-05-12/10-COVID-Scobie-508.pdf

Pathophysiology

Figure 1: Typical clinical course, viral PCR, and antiviral antibody detection and infectivity of severe SARS-CoV-2 infection

McGrath, et al. Lancet Resp Med. July 2020.

Parasher. Postgrad Med J. Sept 2020.

Outline

- Treatment of COVID-19
 - Monoclonal antibodies
 - Remdesivir
 - Treatments aimed at inflammatory/immune response to virus
- Prevention of COVID-19
 - Vaccines
 - Safety concerns
 - Special populations

Assessment Question #1

- Which of the following is the only medication to be recommended as a AI recommendation in current NIH COVID-19 treatment guidelines?
 - A. Remdesivir
 - B. Dexamethasone
 - C. Tocilizumab
 - D. Casirivimab/imdevimab
 - E. Hydroxychloroquine

Monoclonal Antibodies

- Neutralizing monoclonal antibodies target receptorbinding domain (RBD) of spike protein of SARS-CoV-2
 - Each antibody binds to different epitope of RBD
 - Available antibodies derived from serum of patients early in pandemic and humanized mice exposed to SARS-CoV-2

Fig. 3 | Inhibition of SARS-CoV-2 target cell engagement by neutralizing monoclonal antibodies. Neutralizing

Monoclonal Antibodies

- Being evaluated for treatment and prophylaxis in early disease
 - ACTIV-3 trial in hospitalized patients stopped early for futility¹
- EUAs
 - Bamlanivimab 700mg 11/9/2020
 - Casirivimab/imdevimab (REGN10933) 1200mg/1200mg 11/21/2020
 - Bamlanivimab / etesevimab 700mg/1400mg 2/9/2021
 - Treatment of non-hospitalized patients with mild-mod COVID-19 at high risk of severe dx or hospitalization
 - Administered ASAP after positive test and w/in 10 days of symptom onset

FDA NEWS RELEASE

Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Monoclonal Antibody Bamlanivimab

Alternative monoclonal antibody therapies authorized to treat patients with COVID-19 remain available

f Share 🕑 Tweet	in Linkedin	🖂 Email	🖨 Print
-----------------	-------------	---------	---------

For Immediate Release: April 16, 2021

Español

Today, the U.S. Food and Drug Administration revoked the emergency use authorization (EUA) that allowed for the investigational monoclonal antibody therapy bamlanivimab, *when administered alone*, to be used for the treatment of mild-to-moderate COVID-19 in adults and certain pediatric patients. Based on its ongoing analysis of emerging scientific data, specifically the sustained increase of SARS-CoV-2 viral variants that are resistant to bamlanivimab alone resulting in the increased risk for treatment failure, the FDA has determined that the known and potential benefits of bamlanivimab, when administered alone, no longer outweigh the known and potential risks for its authorized use. Therefore, the agency determined that the criteria for issuance of an authorization are no longer met and has revoked the EUA.

FDA news release. <u>https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonal-antibody-bamlanivimab</u>

Monoclonal Antibodies

• EUAs

- Casirivimab/imdevimab (REGN10933) 1200mg/1200mg
- Bamlanivimab / etesevimab 700mg/1400mg
- Treatment of non-hospitalized patients with mild-mod COVID-19 at high risk of severe disease or hospitalization
 - Body mass index (BMI) \geq 35
 - Chronic kidney disease
 - Diabetes mellitus
 - Immunocompromising condition
 - Currently receiving immunosuppressive treatment
 - Aged ≥65 years
 - Aged \geq 55 years and have: CV disease, HTN, or COPD/chronic resp disease

Evidence for Monoclonal Antibodies

- Limited published, peer-reviewed literature
- BLAZE-1 Bam vs. bam/ete (2800/2800mg) vs. placebo
 - Interim results published¹
 - Bam/ete group had significant change of viral load (p=0.01) and lower proportion of hospitalizations/ER visits (1/109 vs. 9/152, p=0.049)
 - Unpublished²
 - Reduction in hospitalization/death by any cause by day 29 (11/518 (2.1%) vs. 36/517 (7.0%); p=0.0004)

- 1. Gottlieb, et al. JAMA. 2021.
- 2. NIH COVID-19 guidelines. Updated 4/21/21.

Evidence for Monoclonal Antibodies

- Limited published, peer-reviewed literature
- Casi/imdevi
 - Interim results published¹
 - Reduction in viral load, numerically lower medically attended visits, esp Ab-
 - Unpublished²
 - Reduction in hospitalization/death by any cause by day 29 (18/1355 (1.3%) vs. 62/1341 (4.6%); p<0.0001)
- NIH guidelines recommends either product for use as outlined in EUA
 - Advises to start ASAP positive result and w/in 10 days of symptom onset; may need to consider regional variants
- 1. Weinreich, et al. NEJM. 2021.
- 2. NIH COVID-19 guidelines. Updated 4/21/21.

Figure 1. Pharmacologic Management of Patients with COVID-19 Based on Disease Severity

Doses and durations are listed in the footnotes.

DIOLAGE GEVENITT	TAILE O HEODIMIERDATIONO
	For patients who are not at high risk for disease progression, provide supportive care and symptomatic management (AIII).
Not Hospitalized, Mild to Moderate COVID-19	For patients who are at high risk of disease progression (as de- fined by the FDA EUA criteria for treatment with anti-SARS-CoV-2 monoclonal antibodies), use one of the following combinations: • Bamlanivimab plus etesevimab (Alla) • Casirivimab plus imdevimab (Alla)
Hospitalized but Does Not Require Supplemental Oxygen	There are insufficient data to recommend either for or against the routine use of remdesivir. For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized and Requires Supplemental Oxygen	Use one of the following options: • Remdesivir ^{a,b} (e.g., for patients who require minimal supplemental oxygen) (Blla) • Dexamethasone ^e plus remdesivir ^{a,b} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bll) ^{3,e} • Dexamethasone ^e (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bl)
Hospitalized and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone" (Al)" • Dexamethasone" plus remdesivir** (BIII)** For patients who were recently hospitalized' with rapidly increasing oxygen needs and systemic inflammation: • Add tocilizumab* to one of the two options above (BIIa)
Hospitalized and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasone ^e (AI) ^a For patients who are within 24 hours of admission to the ICU: Dexamethasone ^e plus tocilizumab ^e (Bila)

NIH COVID-19 Treatment Guidelines. Last update April 21, 2021.

Remdesivir

- Inhibitor of viral RNA-dependent, RNA polymerase affects viral replication
- Repurposed drug did not work well for Ebola but in vitro activity against SARS-CoV2 and animal studies suggested lower viral loads and less lung damage when given early
- Several clinical trials
 - ACTT-1
 - SOLIDARITY

- Randomized, placebo-controlled, double-blind
- Enrolled 1062 hospitalized patients with COVID-19 and evidence of LRTI in 60 international trial sites (45 in US) from Feb 21 – April 19, 2020
- Patients clinical status assessed daily with 8-category ordinal scale for 28 days
- Outcomes
 - Primary Time to recovery (category 1-3 not hospitalized or hospitalized but not for COVID-19 treatment)
 - Key secondary
 - Clinical status at day 15
 - Mortality at 15 and 29 days

Table 2. Outcomes Overall and Accordin	Table 2. Outcomes Overall and According to Score on the Ordinal Scale in the Intention-to-Treat Population.*									
	Ov	erall				Ordinal Scor	e at Baseline			
			4	L.	9	5		6	7	7
	Remdesivir (N=541)	Placebo (N=521)	Remdesivir (N=75)	Placebo (N = 63)	Remdesivir (N=232)	Placebo (N = 203)	Remdesivir (N=95)	Placebo (N=98)	Remdesivir (N=131)	Placebo (N=154)
Recovery										
No. of recoveries	399	352	73	58	206	156	57	61	63	77
Median time to recovery (95% CI) - days	10 (9-11)	15 (13-18)	5 (46)	6 (4-7)	7 (6-8)	9 (7-10)	15 (10-27)	20 (14-26)	29 (24-NE)	28 (24-NE)
Rate ratio (95% CI)†	1.29 (1.12-1	.49 [P<0.001])	1.29 (0.9	1-1.83)	1.45 (1.1	18-1.79)	1.09 (0.3	76-1.57)	0.98 (0.7	70-1.36)
Mortality through day 14:										
Hazard ratio for data through day 15 (95% CI)	0.55 (0.	36-0.83)	0.42 (0.0	4-4.67)	0.28 (0.1	12-0.66)	0.82 (0.4	40-1.69)	0.76 (0.3	19–1.50)
No. of deaths by day 15	35	61	1	2	7	21	13	17	14	21
Kaplan-Meier estimate of mortality by day 15 — % (95% CI)	6.7 (4.8–9.2)	11.9 (9.4–15.0)	1.3 (0.2-9.1)	3.2 (0.8–12.1)	3.1 (1.5–6.4)	10.5 (7.0–15.7)	14.2 (8.5–23.2)	17.3 (11.2–26.4)	10.9 (6.6–17.6)	13.8 (9.2–20.4)
Mortality over entire study period ;							j			
Hazard ratio (95% CI)	0.73 (0.	52-1.03)	0.82 (0.1	7-4.07)	0.30 (0.1	14-0.64)	1.02 (0.	54–1.91)	1.13 (0.6	67–1.89)
No. of deaths by day 29	59	77	3	3	9	25	19	20	28	29
Kaplan-Meier estimate of mortality by day 29 — % (95% CI)	11.4 (9.0–14.5)	15.2 (12.3–18.6)	4.1 (1.3–12.1)	4.8 (1.6–14.3)	4.0 (2.1–7.5)	12.7 (8.8–18.3)	21.2 (14.0-31.2)	20.4 (13.7-29.8)	21.9 (15.7-30.1)	19.3 (13.8–26.5)
Ordinal score at day 15 (±2 days) no. (%	8									
1	157 (29.0)	115 (22.1)	38 (50.7)	28 (44.4)	90 (38.8)	62 (30.5)	18 (18.9)	14 (14.3)	11 (8.4)	11 (7.1)
2	117 (21.6)	102 (19.6)	20 (26.7)	15 (23.8)	70 (30.2)	58 (28.6)	22 (23.2)	19 (19.4)	5 (3.8)	10 (6.5)
3	14 (2.6)	8 (1.5)	8 (10.7)	4 (6.3)	6 (2.6)	4 (2.0)	0	0	0	0
4	38 (7.0)	33 (6.3)	3 (4.0)	7 (11.1)	17 (7.3)	13 (6.4)	12 (12.6)	4 (4.1)	6 (4.6)	9 (5.8)
5	58 (10.7)	60 (11.5)	3 (4.0)	5 (7.9)	25 (10.8)	18 (8.9)	2 (2.1)	14 (14.3)	28 (21.4)	23 (14.9)
6	28 (5.2)	24 (4.6)	1 (1.3)	0	5 (2.2)	7 (3.4)	12 (12.6)	11 (11.2)	10 (7.6)	6 (3.9)
7	95 (17.6)	121 (23.2)	1 (1.3)	3 (4.8)	13 (5.6)	21 (10.3)	16 (16.8)	20 (20.4)	57 (43.5)	74 (48.1)
8	34 (6.3)	58 (11.1)	1 (1.3)	1 (1.6)	6 (2.6)	20 (9.9)	13 (13.7)	16 (16.3)	14 (10.7)	21 (13.6)
Odds ratio (95% CI)	1.5 (1	.2–1.9)	1.5 (0.	8-2.7)	1.6 (1.	2-2.3)	1.4 (0.	.9–2.3)	1.2 (0.	8–1.9)

Subgroup	Patients		Recovery Rate Ratio (95%	i CIJ	
All patients	1062		:		1.29 (1.12-1.49
Geographic region					
North America	847				1.30 (1.10-1.53
Europe	163		- 		1.30 (0.91-1.87
Asia	52	+			1.36 (0.74-2.47
Race					
White	566		\mapsto		1.29 (1.06-1.57
Black	226		\mapsto		1.25 (0.91-1.72
Asian	135	+			1.07 (0.73-1.58
Other	135				1.68 (1.10-2.5)
thnic group					
Hispanic or Latino	250				1.28 (0.94-1.73
Not Hispanic or Latino	755		· · · · · · · · · · · · · · · · · · ·		1.31 (1.10-1.55
6°					
18 to <40 yr	119			• • • •	1.95 (1.28-2.9)
40 to <65 yr	559		<u>←</u> •		1.19 (0.98-1.44
a 65 yr	384				1.29 (1.00-1.6)
ex					
Male	684				1.30 (1.09-1.5)
Female	228				13100-14
imptoms duration					
«10 days	676		· · · · · ·		1.37 (1.14-1.64
>10 days	383		+++++++++++++++++++++++++++++++++++++++		1.20 (0.94-1.52
aseline ordinal score					
4 (not receiving oxygen)	138				1.29 (0.91-1.83
5 (receiving axygen)	435		:		1.45 (1.18-1.75
6 (receiving high-flow oxygen or noninvasive mechanical ventilation)	193	,			1.09 (0.76-1.5)
7 (receiving mechanical ventilation or ECMO)	285	0.50	1.00 2	2.00 3.00	0.98 (0.70-1.36
		Nacaba Batter	Remdesible	Retter	

Figure 3. Time to Recovery According to Subgroup.

The widths of the confidence intervals have not been adjusted for multiplicity and therefore cannot be used to infer treatment effects. Race and ethnic group were reported by the patients.

Remdesivir

- ACTT-1 trial led to FDA approval on Oct 22 for treatment of adults and pediatric patients ≥12 years old and weighing ≥40 kg requiring hospitalization for COVID-19
- However, SOLIDARITY trial...

SOLIDARITY Trial

- Randomized, open-label, adaptive
- Enrolled 11,330 hospitalized patients with COVID-19 in 30 countries (405 hospitals) from March 22 October 4, 2020
 - 2743 randomized to remdesivir, 2708 to standard of care
 - ~48% in each group received corticosteroids
- Outcomes
 - Primary In-hospital mortality 11% vs. 11.1% (p=0.50)
 - Secondary
 - Initiation of mechanical ventilation 10.8 vs. 10.5%
 - Duration of hospitalization no difference

SOLIDARITY Trial

WHO Solidarity Trial Consortium. NEJM. 2020.

SOLIDARITY Trial

Subgroup	Remdesivir	Control	Observed No. of I Remdes Value	d–Expected Deaths in ivir Group Variance	Rate R (99% CI; 9	atio for Death 95% CI for totals)	
,	no. of deaths reporte	d/no. of patients (%)				
Solidarity (stratified according to oxygen use and ventilation)							
No supplemental oxygen	11/661 (2.0)	13/664 (2.1)	-0.6	6.0		0.90 (0.31-2.5	58)
Low-flow or high-flow oxygen	192/1828 (12.2)	219/1811 (13.8)	-16.9	101.8		0.85 (0.66-1.0	09)
Ventilation	98/254 (43.0)	71/233 (37.8)	7.6	40.8		1.20 (0.80-1.8	80)
Stratified total: Solidarity	301/2743 (12.5)	303/2708 (12.7)	-10.0	148.6	\diamond	0.94 (0.80-1.1	10)
ACTT-1 (stratified according to 4 ordinal score levels)							
No supplemental oxygen	3/75 (4.1)	3/63 (4.8)	-0.3	1.5 -		▶ 0.82 (0.10-6.6	51)
Low-flow oxygen	9/232 (4.0)	25/203 (12.7)	-8.0	6.7		0.30 (0.11-0.8	81)
High-flow oxygen or noninvasive ventilation	19/95 (21.2)	20/98 (20.4)	0.2	9.6	-	1.02 (0.44-2.3	34)
Invasive ventilation	28/131 (21.9)	29/154 (19.3)	1.8	14.3		1.13 (0.57-2.2	23)
Stratified total: ACTT-1	59/533 (11.1)	77/518 (14.9)	-6.4	32.1	<h< td=""><td>0.82 (0.58-1.1</td><td>16)</td></h<>	0.82 (0.58-1.1	16)
Trials with few deaths (and randomization ratio of 2:1)							
Wuhan: low-flow oxygen	11/129 (8.5)	(7/68)×2 (10.3)	-0.8	3.7 -		0.81 (0.21-3.0	07)
Wuhan: high-flow oxygen or ventilati	on 11/29 (37.9)	(3/10)×2 (30.0)	0.6	1.8 -		 1.40 (0.20-9.5 	52)
International: no supplemental oxyge	en 5/384 (1.3)	(4/200)×2 (2.0)	-0.9	2.0 —		► 0.64 (0.10-3.9)	94)
Stratified total: 2:1 trials	27/542 (5.0)	(14/278)×2 (5.0)	-1.1	7.5		0.86 (0.42-1.3	77)
Risk groups (calculated by summation of relevant strata)							
Lower risk: strata with no ventilation	231/3309 (7.0)	282/3277 (8.6)	-27.6	121.6		0.80 (0.63-1.0	01)
Higher risk	156/509 (30.6)	126/505 (25.0)	10.1	66.5	÷10	1.16 (0.85-1.6	60)
Stratified total	387/3818 (10.1)	408/3782 (10.8)	-17.5	188.1	\diamond	0.91 (0.79-1.	.05)
Heterogeneity between trials (Solidarity	vs. ACTT-1 vs. 2:1	trials): $\chi^2_2=0.5$				P=0.20	
				0.0	0.5 1.0 1.5	2.0 2.5 3.0	
				Remdesiv	ir Better Co	ntrol Better	

Figure 4. Meta-Analysis of Mortality in Trials of Random Assignment of Remdesivir or Its Control to Hospitalized Patients with Covid-19.

WHO Solidarity Trial Consortium. NEJM. 2020.

Figure 1. Pharmacologic Management of Patients with COVID-19 Based on Disease Severity

Doses and durations are listed in the footnotes.

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS			
Not Hospitalized, Mild to Moderate COVID-19	For patients who are not at high risk for disease progression, provide supportive care and symptomatic management (AIII). For patients who are at high risk of disease progression (as de- fined by the FDA EUA criteria for treatment with anti-SARS-CoV-2 monoclosal antibodies) use one of the following combinations:			
	• Bamlanivimab plus etesevimab (Alla) • Casirivimab plus imdevimab (Alla)			
Hospitalized but Does Not Require Supplemental Oxygen	There are insufficient data to recommend either for or against the routine use of remdesivir. For patients at high risk of disease progression, the use of remdesivir may be appropriate.			
Hospitalized and Requires Supplemental Oxygen	Use one of the following options: • Remdesivir ^{sh} (e.g., for patients who require minimal supplemental oxygen) (Bila) • Dexamethasone [*] plus remdesivir ^{sh} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bill) ^{1*} • Dexamethasone ^e (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bi)			
Hospitalized and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone" (AI)* • Dexamethasone" plus remdesivir** (BIII)** For patients who were recently hospitalized' with rapidly increasing oxygen needs and systemic inflammation: • Add tocilizumab* to one of the two options above (BIIa)			
Hospitalized and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasone ^e (AI) ^e For patients who are within 24 hours of admission to the ICU: Dexamethasone ^e plus tocilizumab ^e (Blla)			
Rating of Recommendations: A = Strong; B Rating of Evidence: I = One or more randomized randomized trials; IIb = Nonrandomized trials	= Moderate; C = Optional ized trials without major limitations; IIa = Other randomized trials or subgroup analyses of or observational cohort studies; III = Expert opinion			

NIH COVID-19 Treatment Guidelines. Last update April 21, 2021.

Remdesivir Safety

- Adverse effect profile similar in ACTT-1 trial
- Transaminase elevations (2-8%)
 - Per package insert, consider discontinuing if ALT > 10x ULN or if any s/sx of liver failure
 - Monitoring at baseline and throughout therapy

Remdesivir Safety

- Renal disease/failure
 - Concern of accumulation of excipient SBECD¹
 - Safety threshold 250mg/kg/day of SBECD
 - 100mg remdesivir powder, solution contains 3 and 6g of SBECD
 - Small case series in AKI/CKD
 - 20 patients², 18 patients³, 46 patients⁴, 40 patients⁵ no difference in ALT or SCr elevations
- Pregnancy
 - Compassionate use in 86 pregnant women⁶ well tolerated
 - NIH guidelines Remdesivir should not be withheld from pregnant patients if it is otherwise indicated
- 1. Adamsick, et al. JASN. 2020.
- 2. Pettit, et al. CID. 2020.
- 3. Estiverne, et al. Kidney Int Rep. 2020.

- 4. Thakare, et al. Kidney Int Rep. 2021.
- 5. Ackley, et al. AAC. 2021.
- 6. Burwick, et al. CID. 2020.
Dexamethasone – RECOVERY Trial

- Multicenter, randomized, open-label trial in hospitalized patients with COVID-19 in UK
- Enrolled 2104 patients to receive dexamethasone (6mg IV/PO daily) vs. 4321 standard of care
- Outcomes
 - Primary all-cause mortality within 28 days of randomization
 - Secondary
 - Time to discharge
 - Progression to mechanical ventilation or death

RECOVERY Collaborative Group. NEJM. 2020.

RECOVERY Trial

Table 2. Primary and Secondary Outcomes.			
Outcome	Dexamethasone (N = 2104)	Usual Care (N=4321)	Rate or Risk Ratio (95% CI)≏
	ne	o./total no. of patients (S	%)
Primary outcome			
Mortality at 28 days	482/2104 (22.9)	1110/4321 (25.7)	0.83 (0.75-0.93)
Secondary outcomes			
Discharged from hospital within 28 days	1413/2104 (67.2)	2745/4321 (63.5)	1.10 (1.03–1.17)
Invasive mechanical ventilation or death†	456/1780 (25.6)	994/3638 (27.3)	0.92 (0.84-1.01)
Invasive mechanical ventilation	102/1780 (5.7)	285/3638 (7.8)	0.77 (0.62-0.95)
Death	387/1780 (21.7)	827/3638 (22.7)	0.93 (0.84–1.03)

* Rate ratios have been adjusted for age with respect to the outcomes of 28-day mortality and hospital discharge. Risk ratios have been adjusted for age with respect to the outcome of receipt of invasive mechanical ventilation or death and its subcomponents.

† Excluded from this category are patients who were receiving invasive mechanical ventilation at randomization.

RECOVERY Trial

at Randomization	Dexamethasone	Usual Care	Rate	Ratio (95% CI)	
	no. of events/	total no. (96)			
Invasive mechanical ventilation	95/324 (29.3)	283/683 (41.4)			0.64 (0.51-0.81)
Oxygen only	298/1279 (23.3)	682/2604 (26.2)			0.82 (0.72-0.94)
No oxygen received	89/501 (17.8)	145/1034 (14.0)			1.19 (0.91-1.55)
All Patients	482/2104 (22.9)	1110/4321 (25.7)	\sim		0.83 (0.75-0.93)
			-		P<0.001
Chi-square trend across t	hree categories: 11.5		0.50 0.75 1.00	1.50 2.00	
			Dexamethasone Better	Usual Care Better	

Figure 3. Effect of Dexamethasone on 28-Day Mortality, According to Respiratory Support at Randomization.

Shown are subgroup-specific rate ratios for all the patients and for those who were receiving no oxygen, receiving oxygen only, or undergoing invasive mechanical ventilation at the time of randomization. Rate ratios are plotted as squares, with the size of each square proportional to the amount of statistical information that was available; the horizontal lines represent 95% confidence intervals.

Figure 1. Pharmacologic Management of Patients with COVID-19 Based on Disease Severity

Doses and durations are listed in the footnotes.

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS
	For patients who are not at high risk for disease progression, provide supportive care and symptomatic management (AIII). For patients who are at high risk of disease progression (as de-
Not Hospitalized, Mild to Moderate COVID-19	fined by the FDA EUA criteria for treatment with anti-SARS-CoV-2 monoclonal antibodies), use one of the following combinations: • Bamlanivimab plus etesevimab (Alla) • Casirivimab plus imdevimab (Alla)
Hospitalized but Does Not Require Supplemental Oxygen	There are insufficient data to recommend either for or against the routine use of remdesivir. For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized and Requires Supplemental Oxygen	Use one of the following options: • Remdesivir th (e.g., for patients who require minimal supplemental oxygen) (Bila) • Dexamethasone ^c plus remdesivir th (e.g., for patients who require increasing amounts of supplemental oxygen) (Bill) th • Dexamethasone ^c (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bi)
Hospitalized and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone" (Al)" • Dexamethasone" plus remdesivir** (BIII)** For patients who were recently hospitalized' with rapidly increasing oxygen needs and systemic inflammation: • Add tocilizumab* to one of the two options above (BIIa)
Hospitalized and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasone ^c (Al) ^b For patients who are within 24 hours of admission to the ICU: Dexamethasone ^c plus tocilizumab ^o (Bila)

NIH COVID-19 Treatment Guidelines. Last update April 21, 2021.

Immunomodulators – IL-6 Inhibitors 🟵

- COVACTA¹ severe COVID-19 w oxygen sat $\leq 93\%$
 - Enrolled 294 toci vs. 144 placebo from April 13 May 28, 2020
 - No difference in clinical status or mortality
- Veiga, et al² severe or critical COVID-19 supp O2 or mech vent
 - Enrolled 129 patients from May 8 July 17, 2020
 - Stopped early for excess deaths at 15 days in tocilizumab group (17 vs. 3%); inhospital mortality 21 vs. 9% (p=0.02)

• EMPACTA³ – hospitalized w COVID-19 PNA not on mech vent

- Modified Intention-to-Treat 249 tocilizumab vs. 128 placebo
 - Primary outcome combined mechanical ventilation or death 12% vs. 19.3% (p=0.04)
 - Secondary outcome no difference in death from any cause
- 1. Rosas, et al. NEJM. 2021.

2. 2. Veiga, et a. IBMJ. 2021.

3. Salama, et al. NEJM. 2021.

IL-6 Inhibitors – Mostly Tocilizumab 😳

- REMAP-CAP ICU patients within 24 hours of resp support April 19 – Nov 19, 2020
 - 353 tocilizumab, 48 sarilumab, 402 control
 - 93% treated with steroids; 33% with remdesivir; median 1.2 days from hospital admission to enrollment
 - Organ support-free days (10, 11 vs. 0) toci median adjusted OR 1.64 (95% credible interval 1.25 2.14)
 - In-hospital mortality 27% (pooled) vs. 36% toci median adjusted OR 1.64 (95% credible interval 1.14 – 2.35)
- RECOVERY pts w oxygen sat <92% or requiring O2 and CRP
 ≥ 75 mg/L April 23, 2020 Jan 24, 2021
 - 621 toci vs. 729 control 82% steroids
 - Mortality at 28 days (31 vs. 35%; p=0.0028)
 - Discharge w/in 28 days (57% vs 50%; p<0.0001)
 - 1. REMAP-CAP. NEJM. February 25, 2021.
 - 2. RECOVERY. Lancet. May 1, 2021.

Figure 1. Pharmacologic Management of Patients with COVID-19 Based on Disease Severity

Doses and durations are listed in the footnotes.

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS
	For patients who are not at high risk for disease progression, provide supportive care and symptomatic management (AIII).
Not Hospitalized, Mild to Moderate COVID-19	For patients who are at high risk of disease progression (as de- fined by the FDA EUA criteria for treatment with anti-SARS-CoV-2 monoclonal antibodies), use one of the following combinations: • Bamlanivimab plus etesevimab (Alla) • Casirivimab plus imdevimab (Alla)
Hospitalized but Does Not Require Supplemental Oxygen	There are insufficient data to recommend either for or against the routine use of remdesivir. For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized and Requires Supplemental Oxygen	Use one of the following options: • Remdesivir ^{ab} (e.g., for patients who require minimal supplemental oxygen) (Bila) • Dexamethasone ^e plus remdesivir ^{ab} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bill) ^{t/e} • Dexamethasone ^e (e.g., when combination therapy with remdesivir cannot be used or is not available) (BI)
Hospitalized and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone" (AI)* • Dexamethasone" plus remdesivir ^{ali} (BIII)** For patients who were recently hospitalized' with rapidly increasing oxygen needs and systemic inflammation: • Add tocilizumab ^a to one of the two options above (BIIa)
Hospitalized and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasone ^e (Al) ^a For patients who are within 24 hours of admission to the ICU: Dexamethasone ^e plus tocilizumab ^a (Bila)

NIH COVID-19 Treatment Guidelines. Last update April 21, 2021.

Immunomodulators

- JAK inhibitors baricitinib
 - EUA on Nov 19, 2020
 - Baricitinib + remdesivir in hospitalized patients with COVID-19 who require supplemental oxygen, mechanical ventilation, or ECMO
 - Primarily due to ACTT-2 results
 - Double-blind, placebo-controlled in 8 countries from May 8 July 1
 - Baricitinib (4mg daily x 14 days) + remdesivir (10 days) (n=515) vs. remdesivir alone (n=518)
 - Combination group recovered 1 day faster (7 vs. 8 days; p=0.03)
 - High flow or non-invasive ventilation most benefit (10 vs. 18 days)
 - No difference in mortality

Immunomodulators

- JAK inhibitors baricitinib
 - ACTT-4 baricitinib + remdesivir vs. dexamethasone + remdesivir
 - NIH enrollment closed April 13, 2021 for pre-defined futility criteria indicating neither treatment regimen studied likely significantly better than the other¹
 - NIH guidelines²
 - Insufficient data to recommend either for or against use of baricitinib + remdesivir for the treatment of COVID-19 in hospitalized patients, when corticosteroids can be used
 - In rare circumstance when corticosteroids cannot be used, recommends baricitinib + remdesivir for the treatment of COVID-19 in hospitalized, non-intubated patients who require oxygen supplementation

^{1.} Press release: <u>https://www.nih.gov/news-events/news-releases/nih-closes-enrollment-trial-comparing-covid-19-treatment-regimens</u>. April 15, 2021.

^{2.} NIH COVID-19 guidelines. Updated April 21, 2021.

Assessment Question #1

- Which of the following is the only medication to be recommended as a AI recommendation in current NIH COVID-19 treatment guidelines?
 - A. Remdesivir
 - B. Dexamethasone
 - C. Tocilizumab
 - D. Casirivimab/imdevimab
 - E. Hydroxychloroquine

More to Come on Monoclonal Antibodies – Prophylaxis?

- BLAZE-2 unpublished¹
 - Efficacy, safety of bam 4200mg vs placebo in preventing COVID-19 in skilled nursing and assisted living facility residents and staff
 - 80% reduced risk?
- Cas/imdev 600/600mg unpublished²
 - Asymptomatic participants exposed to a COVID-19—infected household member w/in 96 hours
 - Interim results 100% reduction in symptomatic disease; 48% reduction in asymptomatic disease
 1. Construction

Figure. Time since treatment to development of mild or worse COVID-19 with bamlanivimab versus placebo in residents. Residents were SAR8-CoV-2 RT-PCR negative and serology negative at baseline. Mild or worse COVID-19 was defined as positive for SAR8-CoV-2 by RT-PCR and reporting of mild or worse symptoms and signs associated with COVID-19 within 21 days of detection.

- 1. Cohen, et al. CROI abstracts. 2021.
- 2. O'Brien, et al. CROI abstracts. 2021.

Antibiotic Stewardship and COVID-19

Hospital Infection

Healthcare Infection Society

EDITORIAL | VOLUME 106, ISSUE 3, P401-403, NOVEMBER 01, 2020

Antimicrobial stewardship: a COVID casualty?

C. Lynch 😤 🗹 • N. Mahida • J. Gray

Published: October 08, 2020 • DOI: https://doi.org/10.1016/j.jhin.2020.10.002 •

Check for updates

Co-infection and Use of AntibioticsNIH guidelines:

Empiric Broad-Spectrum Antimicrobial Therapy

Recommendations

- In patients with COVID-19 and severe or critical illness, there are insufficient data to recommend empiric broad-spectrum antimicrobial therapy in the absence of another indication.
- If antimicrobials are initiated, the Panel recommends that their use should be reassessed daily in order to minimize the adverse consequences of unnecessary antimicrobial therapy (AIII).

Rationale

There are no reliable estimates of the incidence or prevalence of copathogens with severe acute respiratory syndrome coronavirus 2 at this time.

• IDSA guidelines:

- Bacterial coinfections with SARS-CoV-2 relatively infrequent (likely occurring in <10% of hospitalized COVID-19 patients) – literature does not support routine use of empiric antibiotics
- Recent studies in COVID-19 patients
 - Antibiotics administered in 56 74.6%
 - Bacterial co-infection 3.5 31%

The New Hork Times

With All Eyes on Covid-19, Drug-Resistant Infections Crept In

The spread of other dangerous germs is surging — a result, in part, of the chaotic response to the pandemic.

The Inte Antibiot for the Presi

Arjun Sriniv CAPT, USPHS Associate Dire Division of Hea National Cente

September 9,

CDC

acteria

A hospital worker disinfecting a room where a Covid patient had died. Focus on the coronavirus has helped a different set of germs spread. Shannon Stapleton/Reuters

By Matt Richtel

Procalcitonin in COVID-19

Clinical Therapeutics

Limited Utility of Procalcitonin in Identifying Community-Associated Bacterial Infections in Patients Presenting with Coronavirus Disease 2019

Michael May, Michelle Chang, Donald Dietz, Sherif Shoucri, Justin Laracy, Magdalena E. Sobieszczyk, Anne-Catrin Uhlemann, Jason Zucker, Christine J. Kubin

Infection Control Hospital Epidemiology	The Role of Procalcitonin in Antibiotic Decision-Making in Covid-19 Infection
C C	Published online by Cambridge University Press: 19 April 2021
五连德博士 1	Valeria Fabre iD, Sara Karaba, Joe Amoah, Matthew Robinson, George Jones, Kathryn Dzintars, Morgan Katz, B. Mark Landrum, Sarojini Qasba, Pooja Gupta, Eili Klein and Sara E. Cosgrove Show author details 🗸
• Contract	Article Metrics
Infection Control &	
	Save PDF

COVID-19 Vaccines

Timeline

Vaccine Platforms

			machvateu	Subunit	Viral vector	
		÷ C		NT-T	A CONTRACTOR	
How it works	This vaccine uses DNA or RNA molecules to teach the immune system to target key viral proteins.	This is a weakened version of the actual virus.	An inactivated vaccine uses the whole virus after it has been killed with heat or chemicals.	This vaccine uses a piece of a virus' surface to focus your immune system on a single target.	This approach takes a harmless virus and uses it to deliver viral genes to build immunity.	
Advantages	Easy and quick to design.	Stimulates a robust immune response without causing serious disease.	Safe because the virus is already dead and is easy to make.	Focuses the immune response on the most important part of the virus for protection and cannot cause infection.	Live viruses tend to elicit stronger immune responses than dead viruses or subunit vaccines.	
Disadvantages	Never been done before. There are no licensed DNA or RNA vaccines currently in use.	May not be safe for those with compromised immune systems.	Not as effective as a live virus. Some previous inactivated vaccines have made the disease worse; safety for the novel coronavirus needs to be shown in clinical trials.	May not stimulate a strong response, other chemicals may need to be added to boost long-term immunity.	Important to pick a viral vector that is truly safe. An immune response to the viral vector could make the vaccine less effective.	
Existing examples	• None	 Measles, Mumps and Rubella Chickenpox 	• Polio	 Pertussis Hepatitis C Human Human papillomavirus (HPV) 	Ebola Veterinary medicine	
Group testing this approach for COVID-19	• Moderna (RNA) • Inovio (DNA)	 Codagenix Indian Immunologicals Ltd. 	• Sinovac • Sinopharm	• Novavax • AdaptVac	 University of Oxford & AstraZeneca CanSino Biologics Johnson & Johnson 	

Sources: CDC; NIAID; FDA

MICHELLE GUERRERO and JONATHAN WOSEN U

Vaccine Tracker

	Vaccine	Tri	al			Efficacy			Variants Specifics								
Type	Developer (Name)	Investigational Status (Participants)	EUA Submission	First dose efficacy	Second dose efficacy	Prevention of moderate to severe disease	Prevention of severe disease	Prevention of death	B1.1.7 (United Kingdom)	P.135 (South Africa)	P.1 (Brazil)	Route/# of doses	Timing of Doses	Presentation 2	Storage requirements	Preparation & Handling	S O
RNA tworks	Pfizer/BioNTech (BNT162b2)	Phase 2.6.3 with EUA (44.000)	EUA approved 12/11 for ages 16 and older	<u>52%</u>	<u>95%</u>	Not quantified	<u>95%</u>	<u>100%</u>	<u>No impact</u>	<u>100%</u>	No data	IM/ 2 doses	0, 21 days ²	MDV (5 doses) / 30 mog/0.3mL ¹³	Ultra-cold storage (-80 to -50°C) until expiration date -Thermal shippers replenished with dry loe for 30 days- Freezer (-25 to - 15°C) for up to 2 weeks -Refrigeration (2-8°C) for 5 days. If not used, discard. -Room Temp: thawed valis must be used within 2 hours	-Thawing and reconstitution required. -Reconstitute with 1.8 mL of 0.9% sodium chloride	Stat ho d
How H	Moderna (mRNA-1273)	Phase 3 with EUA (30,000)	EUA approved 12/20 for aces 18 and above	<u>804</u>	235	Not quantified	<u>223</u>	100% (inferred)	<u>No impact</u>	<u>5-fold reduction</u> In antibodies, (unclear impact on efficacy),	No data	IM/ 2 doses	0, 28 days ²	MDV (10 doses) / 100 mog/0.5 mL ¹³	•Freezer (-50 to -15°C) for 7 months NEWI Refrigeration (2-8°C) for 3 months •Room Temp: 24 hours (unpunctured)	Thawing required. Vaccine may be thawed in the refrigerator or at room temperature -Refrigerator: 2.5 hours -Room temperature: 1 hour -Vials that have not been punctured may be kept between 8°C and 25°C for up to 24 hours	Sta 12 r pi
Vector <u>it works</u>	Johnson & Johnson (Ad26.COV2.S)	Phase 3 (44,325)	Administration resumed on 4/23 EUA approved 2/27 for 18 years and older	<u>163</u>	N/A	<u>725.</u>	<u>55%</u>	100%	No data	57% efficacy	No data	IM/ 1 dose	0 day ^s	MDV (5 doses)	2 years at -20°C and at least 3 months at 2-8°C. ^{2,7}	Mix contents of vial gently by swirling before withdrawing, DO NOT SHAKE.	2 tem or 6
Viral How	Oxford/AstraZene ca (AZD1222)	<u>Phase 3</u> (30,000)	Not likely to receive authorization until April/May 2021	<u>76%</u>	<u>82%</u>	<u>(Severe) 100%</u>	<u>100%</u>	Pending	Pending	Pending	Pending	IM/ 2 doses	0, 28 days ⁶	MDV (10 doses) ⁶	Refrigerator (2-8°C) for up to 6 months "may be longer, pending stability testing	N/A	

Covid-19 Vaccine Candidates

ASHP vaccine tracker. <u>https://www.ashp.org/-/media/assets/pharmacy-practice/resource-centers/Coronavirus/docs/Vaccine-candidate-tracking-table</u>. Updated 5/3/21.

Real world vaccine effectiveness

- MMWR May 7, 2021 USA
 - Evaluation at 24 hospitals in 14 states during Jan March 2021
 - Effectiveness of Pfizer-BioNTech or Moderna vaccines against COVID-19—associated hospitalization among adults aged ≥65 years
 - Vaccine effectiveness
 - 94% fully vaccinated
 - 64% partially vaccinated

CDC MMWR. May 7, 2021 / 70(18);674-679.

Vaccine Efficacy or Effectiveness (VE) Against Variants

Vaccine	Study type	VE
Pfizer	Post-EUA	 90% against B.1.1.7 in Qatar* 100% for severe/ 75% against B.1.351 in Qatar critical disease
Janssen	Pre-EUA	 74% in U.S. 66% in Brazil 52% in S. Africa 73-82% for severe/critical disease in each country
Novavax	Pre-EUA Pre-EUA	 96% against non-B.1.1.7 in UK 86% against B.1.1.7 in UK 51% against B.1.351 in S. Africa
AstraZeneca	Pre-EUA Pre-EUA	 84% against non-B.1.1.7 in UK 75% against B.1.1.7 in UK 10% against B.1.351 in South Africa*

* >85% in UK & Israel (predominate B.1.1.7): https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html Abu-Radad and Butt. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants | NEJM

https://www.fda.gov/media/146217/download

Novavax.: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3

Shinde et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Madhi et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Emary et al. Efficacy of ChAdOy1 nCoV-19 (AZD1222) varcine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.Zr- The Lancet **mild/moderate illness

Scobie H. ACIP meeting. May 12, 2021. <u>https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-</u> 2021-05-12/10-COVID-Scobie-508.pdf

Summary of Preliminary Data: Implications of SARS-CoV-2 Variants of Concern on Vaccine Effectiveness

- B.1.1.7
 - Exponential increase in prevalence in United States
 - Minimal impact on VE; attention needed for additional substitutions in receptor binding domain (RBD), such as E484K
- B.1.351
 - Currently low prevalence in United States
 - Moderate impact on VE for some vaccines, though may still provide protection against severe disease
- P.1
 - Increasing prevalence in United States; same 3 RBD mutations as B.1.351
 - Additional data needed on potential impact on VE

Scobie H. ACIP meeting. May 12, 2021. https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-05-12/10-COVID-Scobie-508.pdf

Johnson & Johnson Vaccine EUA

• EUA 2/27/21

- Based on data from 1 international Phase III clinical trial started in 9/2020 – enrolled ~ 40,000 adults ≥ 18 years
 - Interim findings on vaccine efficacy:
 - Against symptomatic, laboratory confirmed COVID-19
 - 66.3% (95% CI = 59.9%−71.8%) ≥14 days after vaccination
 - $65.5\% (95\% \text{ CI} = 57.2\% 72.4\%) \ge 28 \text{ days after vaccination}$
 - Efficacy varied by location
 - Highest in the United States (74.4%; 95% CI = 65.0%–81.6%)
 - o Latin America (64.7%; 95% CI = 54.1%–73.0%)
 - South Africa (52.0%; 95% CI = 30.3%–67.4%)
 - Prevention of COVID-19-associated hospitalization
 - \geq 14 days (2 vs. 29 efficacy = 93.1%; 95% CI = 71.1%–98.4%)
 - $\geq 28 \text{ days} (0 \text{ vs. } 16 \text{efficacy} = 100\%; 95\% \text{ CI} = 74.3\% 100.0\%)$

Adverse Event Reporting

Get vaccinated. Get your smartphone. Get started with v-safe.

Vaccine Safety Datalink

Vaccine Adverse Event Reporting System

CISA

Clinical Immunization Safety Assessment (CISA) Project

J&J Safety

- CDC/FDA recommended pause on 4/13/21 due to 15 cases of thrombosis with thrombocytopenia syndrome (TTS)
 - TTS rare syndrome appears similar to HIT and involves acute venous or arterial thrombosis and new onset thrombocytopenia in patients with no recent known exposure to heparin
- Similar to recently reported cases from Europe after AstraZeneca COVID-19 vaccine

J&J/Janssen Safety

 Based on risk-benefit assessment on 4/23/21 – ACIP reaffirmed interim recommendation for the use of the Janssen COVID-19 vaccine in all persons aged ≥18 years

Summary of population-level risks and benefits by recommendation, all scenarios

Recommendation for all persons aged 18+

- Risks: Expect 26–45 TTS cases, depending on uptake
- Benefits: Depend on uptake, amount of transmission
 - 800–3,500 fewer ICU admissions
 - 600–1,400 fewer deaths

Recommendation for all persons aged 50+

- Risks: Expect 2–3 TTS cases, depending on uptake
- Benefits: Depend on uptake, amount of transmission
 - 300–1000 fewer ICU admissions
 - 40–250 fewer deaths

Note: Benefits of vaccination apply to the whole population over a 6-month period, and result from direct and indirect effects

Acronyms: Thrombosis with Thrombocytopenia Syndrome (TTS)

Brooks JT. CDC COVID Clinician Call. April 24, 2021.

J&J EUA Fact Sheet Warnings

Providers

Thrombosis with Thrombocytopenia

Reports of adverse events following use of the Janssen COVID-19 Vaccine under emergency use authorization suggest an increased risk of thrombosis involving the cerebral venous sinuses and other sites (including but not limited to the large blood vessels of the abdomen and the veins of the lower extremities) combined with thrombocytopenia and with onset of symptoms approximately one to two weeks after vaccination. Most cases of thrombosis with thrombocytopenia reported following the Janssen COVID-19 Vaccine have occurred in females ages 18 through 49 years; some have been fatal. The clinical course of these events shares features with autoimmune heparin-induced thrombocytopenia. In individuals with suspected thrombosis with thrombocytopenia following the Janssen COVID-19 Vaccine, the use of heparin may be harmful and alternative treatments may be needed. Consultation with hematology specialists is strongly recommended. The American Society of Hematology has published considerations relevant to the diagnosis and treatment of thrombosis with thrombocytopenia following the Janssen COVID-19 Vaccine-induced-immune-thrombotic-thrombocytopenia). (see Full EUA Prescribing Information).

Patients

Blood clots involving blood vessels in the brain, abdomen, and legs along with low levels of platelets (blood cells that help your body stop bleeding), have occurred in some people who have received the Janssen COVID-19 Vaccine. In people who developed these blood clots and low levels of platelets, symptoms began approximately one to two-weeks following vaccination. Most people who developed these blood clots and low levels of platelets were females ages 18 through 49 years. The chance of having this occur is remote. You should seek medical attention right away if you have any of the following symptoms after receiving Janssen COVID-19 Vaccine:

U.S. reporting rates of TTS after Janssen COVID-19 vaccination (as of May 7, 2021)

8.73 million total Janssen COVID-19 Vaccine doses administered*

		Femal	es	Males			
Age group	TTS cases	Doses admin	Reporting rate [†] (per million)	TTS cases	Doses admin	Reporting rate [†] (per million)	
18-29 yrs old	3	641,510	4.7	2	714,458	2.8	
30-39 yrs old	8	642,745	12.4	1	728,699	1.4	
40-49 yrs old	7	743,256	9.4	1	775,390	1.3	
50-64 yrs old	4	1,463,416	2.7	2	1,505,505	1.3	
65+ yrs old	0	814,947	0	0	697,925	0	

* Source of doses administered: https://covid.cdc.gov/covid-data-tracker/#vaccinations; * Reporting rate = TTS cases per 1 million Janssen COVID-19 vaccine doses administered

22

Shimabukuro T. ACIP meeting. May 12, 2021.

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-05-12/07-COVID-Shimabukuro-508.pdf

Special Populations

- Pregnancy
 - Preliminary safety of mRNA vaccines in 35,691 V-Safe participants identified as pregnant $(12/14/20 2/28/21)^1$
 - Calculated proportions of adverse pregnancy and neonatal outcomes in vaccinated similar to before Covid-19 pandemic
 - Studies demonstrate:
 - Antibody transfer from mother to fetus^{2,3}
 - Immunogenic in pregnant women and vaccine-elicited antibodies were transported to infant cord blood and breast milk⁴
 - ACOG recommends vaccine access and clinical decision making⁵
- 1. Shimabukuro, et al. *NEJM.* April 21, 2021.
- 2. Rottenstreich, et al. CID. April 3, 2021.
- 3. Mithal, et al. AJOG. 2021.
- 4. Collier, et al. *JAMA.* May 13, 2021.
- 5. ACOG Practice Advisory. Updated 4/28/21.

Special Populations

- Immunocompromised
 - Patients with rheumatic and musculoskeletal diseases
 - American College of Rheumatology task force recommendations¹
 - Solid organ transplant patients
 - Prelim data of immunogenicity of 2-dose mRNA vaccine in 658 patients vaccinated between $12/16/20 3/13/21^2$
 - At median of 21 days (IQR, 18-25 days) after first dose, antibody detectable in 98 participants (15%; 95% CI, 12%-18%)
 - At median of 29 days (IQR, 18-25 days) after second dose, antibody detectable in 357 participants (54%; 95% CI, 50%-58%)
 - Those receiving mycophenolate or azathioprine less likely to develop an antibody response than those not (43% vs 82%, P < .001)
- ACR COVID-19 Vaccine Clinical Guidance Task Force. <u>https://www.rheumatology.org/Portals/0/Files/COVID-19-Vaccine-Clinical-Guidance-Rheumatic-Diseases-Summary.pdf</u>. Updated 4/28/21.
 Boyarsky, et al. *JAMA*. May 5, 2021.

AST Recommendations

AMERICAN SOCIETY OF * TRANSPLANTATION

ABOUT AST | EDUCATION | MEETINGS | PUBLIC POLICY | RESEARCH | COMMUNITIES OF PRACTICE | FOR PATIENTS

STATEMENT ON COVID-19 VACCINATION IN SOLID ORGAN TRANSPLANT RECIPIENTS

Friday, May 7, 2021

Recently, multiple studies have been published examining the response to SARS-CoV-2 mRNA-based vaccines in solid organ transplant (SOT) recipients.(1-7) Overall, these have demonstrated reduced antibody responses to vaccine when compared with reports involving the general public.

The low antibody response rate is concerning but not unexpected as SOT recipients have lower rates of immune responses to other vaccines as well.(8) Further data are needed to evaluate B- and T- cellular responses in SOT recipients after SARS-CoV-2 vaccination and to assess vaccine effectiveness particularly for protection against severe COVID-19 as a clinical end-point. Previous experience with influenza vaccination in transplant patients has demonstrated reduced influenza-related lower respiratory tract disease and hospitalization despite low antibody response.(9, 10). While breakthrough cases of COVID-19 after partial or full vaccination in SOT recipients may occur, it is important to recognize that we may be preventing more cases or reducing severity through vaccination.(11, 12) Thus, we strongly caution against concluding that low antibody response rate to SARS-CoV-2 vaccination will lead to reduced clinical effectiveness until more information is available. These results should not prompt or encourage vaccine hesitancy in SOT recipients.

Until more complete data are available, we urge:

- · Pre-transplant vaccination of all SOT candidates as a priority whenever feasible.
- Continued SARS-CoV-2 vaccination in SOT recipients and priority for vaccination of their household members and caregivers to reduce exposure risk for these
 vulnerable patients.
- Continuation of a stable immunosuppression regimen at the time of vaccination to avoid the risk of organ rejection until more comprehensive data are available.
- Continued adherence of all transplant recipients to protective measures including masking and social distancing regardless of vaccination status.

Key Things to Know About COVID-19 Vaccines

Updated Apr. 28, 2021 Languages - Print

Key Things to Know

- COVID-19 vaccines are <u>safe and effective</u>.
- You may have side effects after vaccination, but these are normal.
- It typically takes two weeks after vaccination for the body to build protection (immunity) against the virus that causes COVID-19. You are not fully vaccinated until 2 weeks after the 2nd dose of a two-dose vaccine or two weeks after a onedose vaccine.
- COVID-19 vaccines are more widely accessible. Everyone 16 years and older is now eligible for a COVID-19 vaccination. <u>Find a COVID-19 vaccine</u>.
- People who have been fully vaccinated can start to do some things that they had stopped doing because of the pandemic.

What We are Still Learning

- We are still learning how well vaccines prevent you from spreading the virus that causes COVID-19 to others, even if you do not have symptoms.
- We're also still learning how long COVID-19 vaccines protect people.
- We are still learning how many people have to be vaccinated against COVID-19 before most people can be considered protected (population immunity).
- . We are still learning how effective the vaccines are against new variants of the virus that causes COVID-19.

CDC. <u>https://www.cdc.gov/coronavirus/2019-ncov/vaccines/keythingstoknow.html</u>. Accessed 5/8/21.

Other Recent Vaccine Updates

- COVID-19 vaccines and other vaccines **may now be administered without regard to timing**
 - If multiple vaccines are administered at a single visit, administer each injection in a different injection site
- Ideally COVID-19 vaccination should be completed \geq 14 days before initiation of immunosuppressive therapies
- Antibody testing not recommended to assess for immunity to SARS-CoV-2 following COVID-19 vaccination
 - Revaccination not recommended after people who received COVID-19 vaccines during chemotherapy or treatment with other immunosuppressive drugs

CDC. <u>https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html#janssen-vaccine-certain-populations</u>. Updated May 14, 2021.

Boosters and Second-Generation Vaccines Against SARS-CoV-2 Variants

- Manufacturers launching booster studies of current vaccines and/or developing second-generation vaccines against B.1.351
- Moderna preliminary phase 2 results of single 50 µg booster of authorized (mRNA-1273) and variant-specific vaccine (mRNA-1273.351)
 - 6-8 months after primary series (pre-booster), low/undetectable neutralizing antibody titers for B.1.351 and P.1, but titers against wild-type still likely protective
 - Both vaccines acceptable safety; boosted immunity to all types (wild-type, B.1.351, P.1)
 - mRNA-1273.351 booster more effective than mRNA-1273 at neutralizing B.1.351
 - In progress bivalent vaccine with 1:1 mix of original & variant vaccine (mRNA-1273.211)

Wu et al. medRxiv preprint (May 6, 2021): https://doi.org/10.1101/2021.05.05.21256716 https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov/ https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-initiate-study-part-broad-development

Scobie H. ACIP meeting. May 12, 2021.

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-05-12/10-COVID-Scobie-508.pdf

COVID-19 Vaccine Hesitancy in Your Community

To make your COVID-19 vaccination outreach more efficient, you can use this map to see where people may be more hesitant about getting vaccinated.

COVID-19 Vaccine Hesitancy Data in the United States, by County

The map shows COVID-19 vaccination hesitancy estimates by county, plus additional facts to help you understand your outreach areas. Zoom in on an area and click on a county to see the information.

US Dept of Health and Human Services. COVID-19 Public Education Campaign. https://wecandothis.hhs.gov/vaccine-hesitancy-your-community. Accessed May 16, 2021.
COVID-19 Vaccine Hesitancy in Your Community

To make your COVID-19 vaccination outreach more efficient, you can use this map to see where people may be more hesitant about getting vaccinated.

COVID-19 Vaccine Hesitancy Data in the United States, by County

The map shows COVID-19 vaccination hesitancy estimates by county, plus additional facts to help you understand your outreach areas. Zoom in on an area and click on a county to see the information.

US Dept of Health and Human Services. COVID-19 Public Education Campaign. https://wecandothis.hhs.gov/vaccine-hesitancy-your-community. Accessed May 16, 2021.

Resources

- Treatment
 - NIH guidelines
 - IDSA guidelines
 - SIDP
- Vaccine information/education
 - CDC
 - APIC
 - NYC DOH
 - ASHP
 - HHS -Wecandothis.hhs.org

Thank you!

Patricia Saunders-Hao, PharmD, BCIDP, BCPS (AQ-ID) Email: psaundershao@northwell.edu

