Controversies Surrounding Stress Ulcer Prophylaxis

Rob MacLaren, PharmD, MPH, FCCM, FCCP

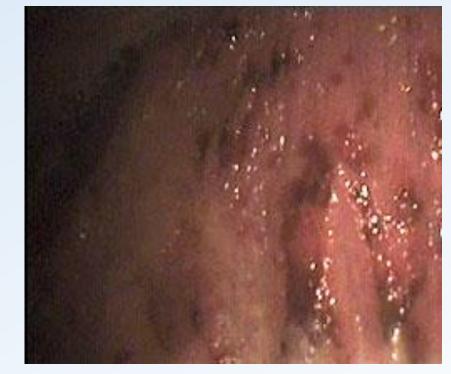
Professor, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences

"Occasional" Critical Care Pharmacist, Medical ICU, University of Colorado Hospital

Disclosures

- No conflicts that I am aware of
- Co-chair of the Society of Critical Care Medicine's Task Force on Stress Ulcer Prophylaxis Guidelines
- This presentation represents my views and opinions (you may disagree)
- Off-label (nonproprietary) content

Objectives


- Delineate risk factors for stress-related mucosal hemorrhage
- Evaluate the efficacy and safety data between pharmacologic agents (and placebo) for stress ulcer prophylaxis
- Discuss strategies to implement (de-implement) stress ulcer prophylaxis in clinical practice

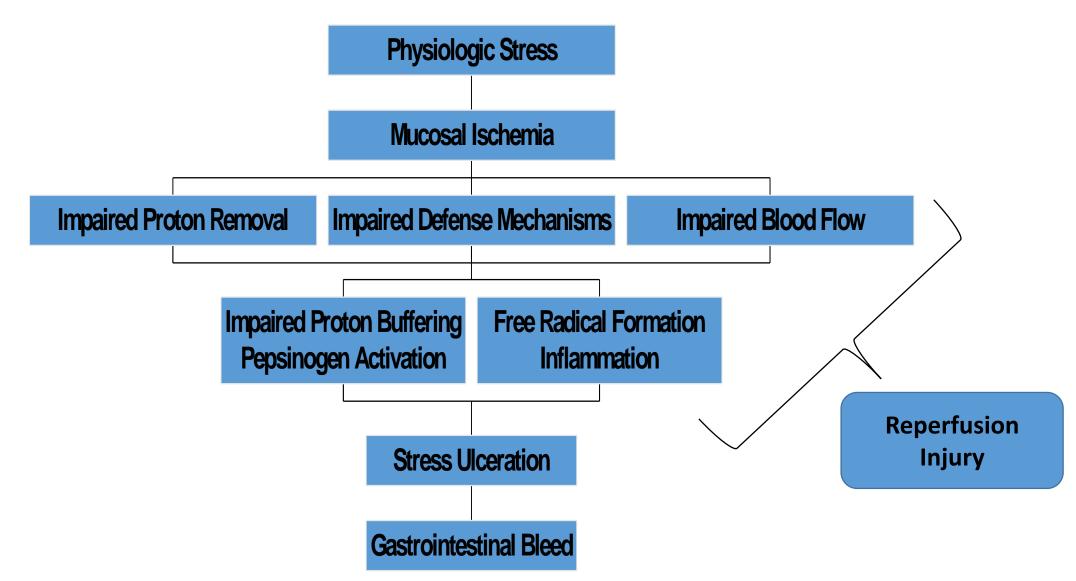
Stress Ulcer Prophylaxis: It's ALL SO Foggy

-

Epidemiology

- Ulceration: 75 100% within 24 hrs. of ICU admission
- Overt bleeding: < 25%
- Clinically-significant bleeding: 6%
 - 1979-1985: 15%
 - 1995-2001: < 3%
 - > 2001: < 1.5%?

- Why decline?
 - Optimized organ support vs. enteral nutrition vs. improved agents for prophylaxis


2017 ACCP Annual Meeting

Cook DJ. N Engl J Med 1994;330:377-81. Schuman RB. Ann Intern Med 1987;106:562-7. Ben-Menachem T. Ann Intern Med 1994;121:568-75. MacLaren R. J Pharm Practice 2002;15:147-57.

What is the primary etiologic cause of stress ulceration?

- A. Hyper-secretion of gastric acid
- B. Increased pepsin secretion
- C. Decreased mucosal bicarbonate production
- D. Gastric mucosal ischemia
- E. Reperfusion injury

Pathophysiology

Stress Ulcer Prophylaxis Goals

- 1. Prevent GI bleeding
- 2. Reduce mortality and morbidities associated with bleeding
- 3. Minimize adverse events
- 4. Optimize cost-effectiveness

Why Provide (or not) SRMB Prevention to Critically III Patients?

- Clinical and economic outcomes of stress-related mucosal hemorrhage
 - Clinically significant bleed lengthens ICU stay by 6.5-11 days and mortality is 1.8-fold higher
- Pathophysiologically rationale
 - H2RAs and PPIs reduce acid exposure and may limit reperfusion injury
- Variable risk factors
- Studies support prophylaxis (or do they?)
- Minimal risks of therapy (benefits > risks)??

Case of Jack

- 67 yo male with diabetes and hypertension admitted to the ICU with septic shock
- Mechanically ventilated and receiving norepinephrine at 15 mcg/min, vasopressin 0.04 units/min and hydrocortisone 50 mg IV q 6 hrs
- MAP = 62 mmHg, lactate = 5.2 mmol/L, UOP = 10-15 ml/hr, SCr = 1.6 mg/dL (142 μmol/L)

Case of Jill

- 67 yo female admitted with CAP vs. COPD exacerbation
- PMH is significant for COPD and atrial fibrillation
- She takes warfarin INR is 2.7
- Confusion is evident
- She is placed on BiPAP and admitted to the ICU

Α.	Yes			
В.	No			

Case of Jill

- 67 yo female admitted with CAP vs. COPD exacerbation
- PMH is significant for COPD and atrial fibrillation
- She takes warfarin INR is 2.7
- Confusion is evident
- She is placed on BiPAP and admitted to the ICU
- Home medications include scheduled PPI for GERD

Α.	Yes	es										
В.	No	0										

Case of Jill

- 67 yo female admitted with CAP vs. COPD exacerbation
- PMH is significant for COPD and atrial fibrillation
- She takes warfarin INR is 2.7
- Confusion is evident
- She is placed on BiPAP and admitted to the ICU
- Intubation is pending

Α.	Yes	5													
Β.	No)													

Ask the Guidelines?

- ASHP (1999):
 - C level evidence: coagulopathy or mechanical ventilation ≥ 48 hours
 - D level evidence: history of GI ulceration / bleed in past year or two of sepsis, ICU stay > 1 week, > 250mg hydrocortisone (or equivalent) per day, occult bleeding ≥ 6 days
- Eastern Association for the Surgery of Trauma (2008):
 - Level 1: mechanical ventilation, coagulopathy, traumatic brain injury, major burn injury
 - Level 2: multi-trauma, sepsis, acute renal failure
 - Level 3: ISS > 15, > 250mg hydrocortisone (or equivalent) per day

Risk Factors

- Prospective cohort study of 2252 ICU patients (674 received prophylaxis vs. 1578 no prophylaxis) to evaluate risk factors for clinically-significant bleed
- "Encouraged to withhold prophylaxis unless head injury, burns > 30% BSA, transplant, or recent peptic ulcer or GIB"

RISK FACTOR	SIMPLE R	EGRESSION	MULTIPLE R	REGRESSION
	ODDS RATIO	P VALUE	ODDS RATIO	P VALUE
Respiratory failure	25.5	< 0.001	15.6	< 0.001
Coagulopathy	9.5	< 0.001	4.3	< 0.001
Hypotension	5.0	0.03	3.7	0.08
Sepsis	7.3	< 0.001	2.0	0.17
Hepatic failure	6.5	< 0.001	1.6	0.27
Renal failure	4.6	< 0.001	1.6	0.26
Enteral feeding	3.8	< 0.001	1.0	0.99
Glucocorticoid administration	3.7	< 0.001	1.5	0.26
Organ transplantation	3.6	0.006	1.5	0.42
Anticoagulant therapy	3.3	0.004	1.1	0.88

Bleed risk = 3.7% if one or both risk factors present vs. 0.1% if neither

Risk Factors

Characteristic	$\frac{\text{Enrolled}}{(\text{N}=2252)}$	
Age — yr	60±15	
Male sex — %‡	66.4	
Primary diagnosis — no. (%)§		
Cardiovascular disease	141 (6.3)	
Cardiovascular surgery	1093 (48.5)	
Respiratory disease	273 (12.1)	
Gastrointestinal disease	221 (9.8)	
Genitourinary disease	89 (4.0)	
Central nervous system	89 (4.0)	
disease		
Head injury	28 (1.2)	
Multiple trauma	18 (0.8)	
Sepsis	36 (1.6)	
Organ transplant	108 (4.8)	
Other	156 (6.9)	
APACHE score	21±9	
Length of stay (days)	5±9	
Mortality — %	9.7	

Bleeding Rates With prophylaxis (n=674): • 87 overt and 23 clinically significant Without prophylaxis

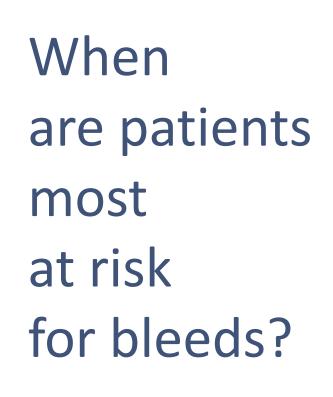
(n=1578):

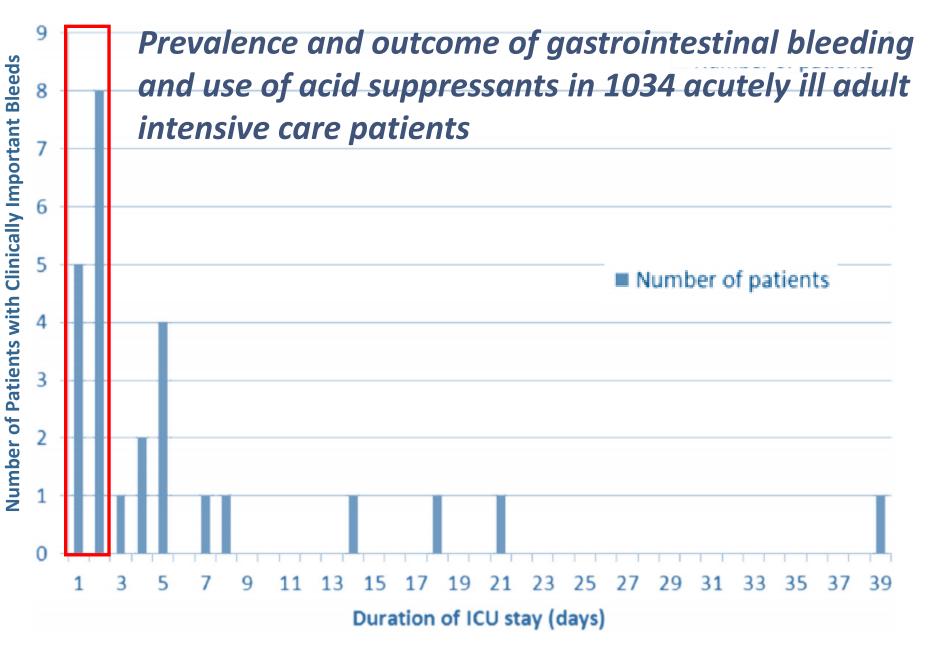
• 13 overt and 10 clinically significant

Risk Factors

- Mechanical ventilation 1.
- Coagulopathy 2.
 - INR > 1.5;
 - Platelets < 50,000;
 - aPTT > 2x control
- Reasons not to withhold 3.
 - Head injury
 - Recent bleed •
 - Burns •
 - Transplant
- Hypotension 4.
- 5. Trauma

Other Analyses of Risk Factors: Pharmacoepidemiologic Studies of PPIs vs. H2RAs


Risk Factor	MacLaren et al (OR, 95% CI) N=35,312	Lilly et al (HR, 95% CI) N=70,093
Age 61-70 71-80 >80	1.66 (1.26-2.19) 1.72 (1.27-2.34) 2.04 (1.48-2.83)	1.12 (0.87-1.45) 1.1 (0.84-1.44) 1.16 (0.85-1.58)
Acute Renal Failure	1.21 (1.02-1.43)	1.59 (1.28-1.97)
Acute hepatic injury	1.56 (1.29-1.88)	
Chronic Hepatic Injury	1.85 (1.47-2.33)	
Neurologic Injury	1.15 (1-1.32)	
Shock or Hypotension	1.17 (1.04-1.33)	
Coagulopathy	1.7 (1.35-2.14)	
Sepsis (1° or 2° diagnosis)	1.19 (1.06-1.34)	
Acute Respiratory Failure (1° or 2° diagnosis)	1.24 (1.08-1.41)	
Myocardial Infarction (1° or 2° diagnosis)	1.67 (1.42-1.96)	
Total Parenteral Nutrition	3.29 (1.93-5.6)	


MacLaren R. JAMA Intern Med 2014;174:564-74. Lilly CM. Chest 2018;154:557-66.

Other Analyses of Risk Factors

- 174 MICU patients (no prophylaxis): overt bleed = 14%
 - Acute respiratory failure, coagulopathy, sepsis, hypotension, malignancy
- 2574 TICU patients (no prophylaxis): bleed = 2.3%
 - Acute respiratory failure, AKI, GI tract unavailable, severe sepsis, spinal cord injury, male sex
- 940 M/SICU patients (461 received prophylaxis): clinically significant bleed = 5.1%
 - MV (RR=1.82), AKI (RR=3.36), anticoagulants (RR=4.19), antiulcer meds (RR=3.36), nutritional failure (RR=3.45)
- 1077 M/S/T/CICU patients (all received prophylaxis): clinically significant bleed = 2.8%
 - Acute respiratory failure (RR=1.16), ranitidine (RR=0.39), enteral nutrition (RR=0.30)
- 1034 mixed ICU patients (73% received acid suppressant): clinically significant bleed = 2.6%
 - SOFA score (OR=1.35), chronic liver disease (RR=7.64), coagulopathy (RR=4.22), number of comorbid conditions, renal replacement (RR=6.89), treatment with acid suppressants (RR=3.61)

"So What Really are the Risk Factors? Is Risk Equally Conferred?

Which Risk Factors (in Critically III) Warrant Prophylaxis?

- Acute respiratory failure / MV ≥ 48 hrs.
- Coagulopathy (INR \geq 1.5)
- Shock
- Severe burns (≥ 30% BSA)
- Trauma
- Intracranial bleed, severe head injury, SCI
- Transplant (solid organ)
- Acute hepatic or renal dysfunction

- GI bleed < 12 weeks
- Pharmacologic interventions (high dose CS, chronic NSAID use, vasopressor use)
- Intramucosal pH < 7.30
- Enteral nutrition as a protective factor??
- H. pylori positive??

How Common are These in the ICU?

Which agent for stress ulcer prophylaxis?

Case of Jack

- 67 yo male with diabetes and hypertension admitted to the ICU with septic shock
- Mechanically ventilated and receiving norepinephrine at 15 mcg/min, vasopressin 0.04 units/min and hydrocortisone 50 mg IV q 6 hrs
- MAP = 62 mmHg, lactate = 5.2 mmol/L, UOP = 10-15 ml/hr, SCr = 1.6 mg/dL (142 μmol/L)
 - A. PPI, scheduled intermittent
 - B. H2RA, scheduled intermittent
 - C. Sucralfate
 - D. Enteral nutrition
 - E. None needed

And the Surveys Say...?

Survey of 245 SCCM Prescribers

Cross Sectional Evaluation of 584 Patients in 27 Hospitals

Survey of 97 adults ICUs across 11 countries: PPIs used in 64% of ICUs and H2RAs in 31% of ICUs
 Preslaski C. J Clin Pharm and Therapeutics 2014; 39:658-62. Barletta J. J Crit Care 2014; 29:955-60. Krag M, et al. Intensive Care Med 2014;41:833-845.

Ask the Guidelines?

- ASHP (1999):
 - Sucralfate or H2RAs
- Surviving Sepsis Campaign:
 - In 2008,
 - "We recommend stress ulcer prophylaxis using H2RA (1A) or PPI (1B)"
 - In 2012,
 - "We suggest the use of PPIs rather than H2RAs (2C)"
 - In 2016,
 - "We suggest using either PPIs or H2RAs (weak recommendation, low quality of evidence)"
- Eastern Association for the Surgery of Trauma (2008):
 - Level 1: "no difference between H2RAs and PPIs"
- Danish Society of Intensive Care Medicine (2014):
 - "We <u>recommend</u> not using SUP routinely for adult critically ill patients outside the context of trials (1C)"

Erstad B. AJHP 1999;56:347-79. Dellinger RP. Intensive Care Med 2008;34:17-60. Dellinger RP. Crit Care Med 2013;41:580-637. Rhodes A. Intensive Care Med 2017;43:304-77. <u>www.East.org</u>. Madsen KR. Dan Med J 2014;61:C4811.

Are H2RAs the Gold Standard?

- Randomized, double-blind study of 1200 mechanically ventilated ICU patients
- Ranitidine 50mg iv q8hrs vs. sucralfate 1g N/OG q6hrs
- Results:
 - Risk factors not reported but...
 - trauma = 13.2%, sepsis = 6.3%, transplant = 1.6%, burns = 1%
 - Clinically-significant bleeding (transfusion or hypotension):
 - R = 1.7% vs. S = 3.8% (p=0.02), NNT = 48
 - Pneumonia:
 - R = 19.1% vs. S = 16.2%
 - ICU mortality:
 - R = 23.5% vs. S = 22.8%
 - LOS:
 - median of 9 days (both groups)

Sucralfate Resurgence?

Clinically Important Bleed

Pneumonia

	Sucralf	ate	H2RA			Risk Ratio	Risk	Ratio			Sucralf	ate	H2RA			Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total E	vents	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI		Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Ben-Menachem 1994	5	100	5	100	11.7%	1.00 [0.30, 3.35]			0	Laggner 1989	0	16	2	16	0.3%	0.20 [0.01, 3.86]			
Cook 1998	23	604	10	596	31.8%	2.27 [1.09, 4.73]				Simms 1991	8	30	9	32	3.5%	0.95 [0.42, 2.14]			
Fabian 1993	4	99	7	114	11.9%	0.66 [0.20, 2.18]		-		Pickworth 1993	6	39	5	44	1.9%	1.35 [0.45, 4.09]			
Kantorova 2004	3	69	2	71	5.5%	1.54 [0.27, 8.96]		·		Fabian 1993	29	99	37	114	14.3%	0.90 [0.60, 1.35]			
Laggner 1989	3	16	7	16	12.7%	0.43 [0.13, 1.37]		+		Ryan 1993 Bon Monochom 1004	8	58	12	56	2.6%	1.10 [0.43, 2.84]			
Misra 2005	7	49	5	45	14.8%	1.29 [0.44, 3.76]				Ben-Menachem 1994 Prod'hom 1994	12 10	100 83	13	100 80	4.3% 4.9%	0.92 [0.44, 1.92] 0.46 [0.23, 0.91]			
Pickworth 1993	0	39	0	44		Not estimable				Mustafa 1995	2	15	21	16	1.9%	0.46 [0.23, 0.91]			
Prakash 2008	0	25	1	25	1.7%	0.33 [0.01, 7.81]				Thomason 1996	30	80	27	80	13.4%	1.11 [0.73, 1.69]			
Prod'hom 1994	1	83	1	80	2.3%	0.96 [0.06, 15.15]				Harlaftis 1997	5	40	12	40	2.6%	0 42 10 16 1 071			
Ruiz-Santana 1991	1	24	0	19	1.7%	2.40 [0.10, 55.79]			_	Cook 1998	98	604	114	596	38.9%	0.85 [0.66, 1.08]	1998	-	
Ryan 1993	2	58	0	56	1.9%	4.83 [0.24, 98.44]				De Azevedo 1999	3	32	4	38	1.2%	0.89 [0.22, 3.69]			
Simms 1991	1	30	1	32	2.3%	1.07 [0.07, 16.30]				Kantorova 2004	6	69	7	71	2.2%	0.88 [0.31, 2.49]	2004		
Thomason 1996	0	80	0	80		Not estimable				Misra 2005	5	49	2	45	0.9%	2.30 [0.47, 11.25]	2005		
Tryba 1985	0	34	1	33	1.7%	0.32 [0.01, 7.68]				Prakash 2008	10	25	15	25	7.0%	0.67 [0.37, 1.19]	2008		
								•	_	Total (95% CI)		1339		1353	100.0%	0.84 [0.72, 0.98]		•	
Total (95% CI)		1310		1311	100.0%	1.19 [0.79, 1.80]		•		Total events	233		284						
Total events	50		40	<i>.</i>	= A. 12		а г			Heterogeneity. Tau ² = 0	0.00; Chi ²	= 13.5	3, df = 1	4 (P =	0.49); l ^z	= 0%	F	0.01 0.1 1 10	100
Heterogeneity: $Tau^2 = ($				(P = (0.59); l* =	: 0%	0.01 0.1	1 10	100	Test for overall effect: Z	= 2.20 (P = 0.0	3)				0	Favours Sucralfate Favours H2RA	100
Test for overall effect: Z	. = 0.81 (P = 0.42;)				Favours SUCRALFATE	Favours H2RA											

PPIs > H2RAs: Clinically Important GI Bleed

• Meta-analysis (random-effects model) of 14 trials and 1720 subjects:

	Favours	s PPI	H2R/	4		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Conrad 2005	7	178	10	181	45.7%	0.71 [0.28, 1.83]	
Fink 2003	0	158	0	31		Not estimable	
Hata 2005	0	70	4	70	4.8%	0.11 [0.01, 2.03]	
Kantorova 2004	1	72	2	71	7.2%	0.49 [0.05, 5.32]	· · · · · · · · · · · · · · · · · · ·
Kotlyanskaya 2007	0	45	3	21	4.8%	0.07 [0.00, 1.27]	
Levy 1996	2	32	11	35	19.9%	0.20 [0.05, 0.83]	
Morris 2002	0	169	0	33		Not estimable	
Phillips 1998	1	33	4	25	9.0%	0.19 [0.02, 1.59]	
Powell 1993	0	20	0	11		Not estimable	
Rosaliti 1993	0	14	0	14		Not estimable	
Solouki 2009	1	61	4	68	8.7%	0.28 [0.03, 2.43]	
Somberg 2008	0	167	0	35		Not estimable	
Total (95% CI)		1019		595	100.0%	0.36 [0.19, 0.68]	◆
Total events Heterogeneity: Tau ² =				5 (P = 0	0.53); I ² =	= 0%	0.005 0.1 1 10 200
Test for overall effect:	Z = 5.14	(P = 0)	.002)				Favours PPI Favours H2RA

• No difference in pneumonia or mortality rates

PPIs > H2RAs: Clinically Important GI Bleed... Again

• Meta-analysis (random-effects model) of 19 trials and 2117 subjects:

	PPI		H2R	A		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Risaliti 1993	0	14	0	14		Not estimable	1993	
Powell 1993	0	20	0	10		Not estimable	1993	
Levy 1996	Z	32	11	35	18.4%	0.20 (0.05, 0.83)	1996	
Phillips 1998	1	33	4	25	8.3%	0.19 [0.02, 1.59]	1998	
Fink 2003	0	158	0	31		Not estimable	Z003	
Kantorova 2004	1	72	2	71	6.6%	0.49 [0.05, 5.32]	2004	
Conrad 2005	7	178	10	181	42.2%	0.71 [0.28, 1.83]	2005	
Hata 2005	0	70	4	70	4.5%	0.11 [0.01, 2.03]	2005	•
Kotiyanskaya 2007	0	45	3	21	4.4%	0.07 [0.00, 1.27]	2007	•
Somberg 2008	0	167	0	35		Not estimable	2008	
Solouki 2009	1	61	4	68	8.0%	0.28 [0.03, 2.43]	2009	
Fogas 2013	0	38	0	41		Not estimable	2013	
Wee 2013	1	68	0	61	3.7%	2.70 [0.11, 64.96]	2013	
Lee 2014	0	30	1	30	3.8%	0.33 (0.01, 7.87)	2014	+
								-
Total (95% CI)		986		693	100.0%	0.39 [0.21, 0.71]		-
Total events	13		39					
Heterogeneity: Tau ^z =				8 (P = (0.59); P -	- 0%		0.02 0.1 1 10 50
Test for overall effect	: Z = 3.04	$\mathbf{i} (\mathbf{P} = 0)$	1.002)					Favors PPI Favors H2RA

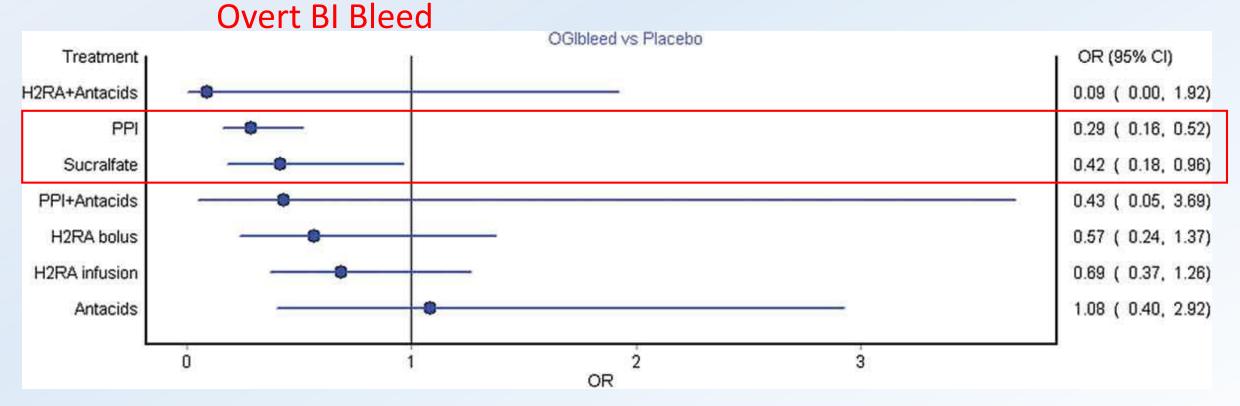
• No difference in pneumonia, CDI or mortality rates

PPIs > H2RAs: Not All Studies are Equal

Conrad Study:

- Randomized, double-blind, double-dummy, <u>non-inferiority</u> trial of 359 mechanically ventilated patients
- IV cimetidine 300mg bolus then 50mg/hr (titrated to pH) vs. oral omeprazole 40mg daily
- Results:
 - Clinically-significant bleeding (bloody gastric lavage):
 - C = 5.5% vs. O = 3.9%
 - Any bleeding:
 - C = 32% vs. O = 19.1% (p=0.005)
 - Risk factors:
 - 67% with ≥ 4
 - Pneumonia:
 - C = 9.4% vs. O = 11.2%
 - Mortality:
 - C = 15.2% vs. O = 11.6%

Levy Study:


- 67 mixed ICU patients randomized to SOS 20mg qday or ranitidine 6.25-8.3 mg/hr
- Results:
 - Clinically-significant bleeding (transfusion or hypotension):
 - R = 31% vs. O = 6% (p=0.013)
 - # of risk factors:
 - <u>R=2.7 ± 1.8 vs. O=1.9 ± 1.0 (p<0.05)</u>
 - Pneumonia:
 - R = 14% vs. O = 3%
 - Mortality:
 - 34% both groups

PPIs < H2RAs

- Pharmacoepidemiologic cohort study of ICU patients requiring mechanical ventilation >24hrs:
 - ICD-9 coded GI bleed adjusted for propensity score and covariates in 35,312 patients across 71 hospitals:
 - OR = 2.24 (95% Cl, 1.81-2.76) against PPIs
 - ICD-9 coded GI bleed in matched groups of 8799 each:
 - OR = 1.95 (95% CI, 1.44-2.65) against PPIs
- Pharmacoepidemiologic cohort study of 70,093 eICU patients with ≥ 1 risk factor:
 - ICD-9 coded GI bleed in matched groups:
 - HR = 1.82 (95% Cl, 1.19-2.78) against PPIs

What About NO Prophylaxis and GI Bleed?

• Meta-analysis (random-effects model) of 37 trials and 4258 subjects:

No affect of therapies on pneumonia or mortality

What About NO Prophylaxis and GI Bleed?

Meta-analysis of 17 trials and 1970 subjects of acid suppression vs. placebo on all cause mortality: Random-effects Model:

• RR = 0.44 (95% CI, 0.28-0.68)

Trial Sequential Analysis:

- RR = 0.44 (95% CI, 0.18-1.11)
- Anticipated # of subjects needed is 8707

Conclusions:

- "there seems to be low level of evidence for the use of H2RAs, as compared with placebo, in terms of reduced clinically significant GI bleeding"
- "the level of evidence for the use of PPIs for SUP in critically ill patients is low"
- "there is lack of firm evidence that PPI reduces GI bleeding compared with H2RA or placebo in ICU patients"
- Reason why Danish ICU Society supports NO SUP

PPIs or H2RAs vs. No Prophylaxis

Mortality

a

	PPI/H2F	RA	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.2.1 Trials with overall I	low risk of	bias					
Alhazzani 2017	17	49	13	42	1.9%	1.12 [0.62, 2.03]	
Krag and Marker 2018	510	1642	499	1640	67.8%	1.02 [0.92, 1.13]	
Selvanderan 2016	30	106	25	108	3.4%	1.22 [0.77, 1.93]	
Subtotal (95% CI)		1797		1790	73.0%	1.03 [0.94, 1.14]	•
Total events	557		537			1	
Heterogeneity: Chi ² = 0.64	4, df = 2 (P	= 0.72); ² = 0%				
Test for overall effect: Z =	0.64 (P = 0).52)					
1.2.2 Trials with overall	high risk o	fhias					
Apte 1992	11	16	7	18	0.9%	1 77 10 01 2 441	
						1.77 [0.91, 3.44]	
Benmenachem 1994	28	100	19	100	2.6%	1.47 [0.88, 2.46]	
Burgess 1995	1	16	0	18	0.1%	3.35 [0.15, 76.93]	
El-Kersh 2018	7	55	8	47	1.2%	0.75 [0.29, 1.91]	
Groll 1986	13	114	13	107	1.8%	0.94 [0.46, 1.93]	
Gursoy 2008	6	60	2	15	0.4%	0.75 [0.17, 3.35]	
Halloran 1980	8	26	10	24	1.4%	0.74 [0.35, 1.56]	
Hanisch 1998	7	57	12	57	1.6%	0.58 [0.25, 1.37]	
Jakob 2005	5	20	5	20	0.7%	1.00 [0.34, 2.93]	
Kantorova (H2RA) 2004	11	71	6	37	1.1%	0.96 [0.38, 2.38]	
Kantorova (PPI) 2004	14	72	7	38	1.2%	1.06 [0.47, 2.39]	
Karlstadt 1990	5	54	2	33	0.3%	1.53 [0.31, 7.43]	
Lin 2016	2	60	0	60	0.1%	5.00 [0.25, 102.00]	
Liu (H2RA) 2013	14	58	10	26	1.9%	0.63 [0.32, 1.22]	
Liu (PPI) 2013	17	58	10	27	1.9%	0.79 [0.42, 1.49]	
Macdougall 1977	20	26	31	36	3.5%	0.89 [0.70, 1.14]	
Martin 1993	8	65	7	66	0.9%	1.16 [0.45, 3.02]	
Nielsen 1989	0	12	0	13	0.070	Not estimable	
Peura 1985	7	21	7	18	1.0%	0.86 [0.37, 1.98]	
Powell (H2RA) 1993	0	11	0	5	1.070	Not estimable	
Powell (PPI) 1993	1	20	Ő	5	0.1%	0.86 [0.04, 18.45]	
Rohde 1980	7	14	6	14	0.8%	1.17 [0.52, 2.60]	
Ruiz-Santana 1991	7	19	7	30	0.7%	1.58 [0.66, 3.79]	
Spapen 1995	4	20	2	10	0.1%	1.00 [0.22, 4.56]	
Zinner 1981	4 9	100	17	100	2.3%	0.53 [0.25, 1.13]	
Subtotal (95% CI)		1145	17	924	2.3%	0.96 [0.82, 1.13]	
Total events	212		188			,	Ĩ
Heterogeneity: Chi ² = 16.5	53. df = 22 ((P = 0)	79): ² = (%			
Test for overall effect: Z =	- A Contract of the second	and the second second second					
Total (95% CI)		2942		2714	100.0%	1.01 [0.93, 1.10]	•
Total events	769		725				
Heterogeneity: Chi ² = 18.0		D = 0		0/			
	1.0.1	•	04), ⊫ = t	/0			0.01 0.1 1 10 100
Test for overall effect: Z =				0.473	12 - 00/		Favours PPI/H2RA Favours control
Test for subgroup differen	ces: Uni ² =	0.53, 0	u = 1 (P)	= 0.47)	, 1- = 0%		

Clinically Important Bleed (39 trials):
RR=0.52 (95% CI, 0.45-0.62)

- Hospital-Acquired Pneumonia (16 trials):
 - RR = 1.07 (95% CI, 0.94-1.21)
- CDI (4 trials):
 - RR = 0.78 (0.46-1.34)

Barbateskovic M. Intensive Care Med 2019;45:143-58.

PPIs or H2RAs vs. No Prophylaxis

Clinically Important Bleeding

	SUF	0	Placebo/C	ontrol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 H2RA							
Apte 1992	0	16	0	18		Not estimable	
Basso 1981	0	60	8	56	0.9%	0.05 [0.00, 0.93]	·
Ben-Menachem 1994	3	100	5	100	3.5%	0.60 [0.15, 2.44]	
Burgess 1995	0	16	1	18	0.7%	0.37 [0.02, 8.55]	
Chan 1995	9	49	21	52	14.9%	0.45 [0.23, 0.89]	_ -
Darlong 2003	0	24	0	7		Not estimable	
Friedman 1982	1	11	3	14	1.5%	0.42 [0.05, 3.54]	
Halloran 1978	0	9	2	8	0.8%	0.18 [0.01, 3.27]	· · · · · · · · · · · · · · · · · · ·
Halloran 1980	2	26	8	24	3.3%	0.23 [0.05, 0.98]	
Hanisch 1998	3	57	2	57	2.2%	1.50 [0.26, 8.64]	
Kantorova 2004	2	71	1	75	1.2%	2.11 [0.20, 22.79]	
Karlstadt 1990	Ō	54	1	33	0.7%	0.21 [0.01, 4.92]	←
Luk 1982	4	62	2	61	2.5%	1.97 [0.37, 10.35]	
Macdougall 1977	. 1	26	13	24	1.8%	0.07 [0.01, 0.50]	
Martin 1993	3	65	4	66	3.2%	0.76 [0.18, 3.27]	-
Peura 1985	2	21	7	18	3.3%	0.24 [0.06, 1.03]	
Powell 1993	õ	11	O	10	0.070	Not estimable	
Reusser 1990	Ő	19	Ő	21		Not estimable	
Ruiz-Santana 1991	Ő	19	1	30	0.7%	0.52 [0.02, 12.07]	
Schiessel 1981	3	27	2	28	2.3%	1.56 [0.28, 8.59]	
van den 1985	0	14	1	14	0.7%	0.33 [0.01, 7.55]	
Zinner 1981	5	100	7	100	5.5%	0.71 [0.23, 2.18]	
Subtotal (95% CI)	5	857	r	834	49.7%	0.50 [0.34, 0.74]	•
Total events	38		89				•
Heterogeneity: Tau ² = 0.1		= 17.63.		: 0.41): I [≥]	= 4%		
Test for overall effect: Z =	•			0.11//1			
	- 0.40 (i	- 0.000					
1.2.2 PPI							
Alhazzani 2017	3	49	2	42	2.3%	1.29 [0.23, 7.33]	
El-Kersh 2017	Ō	55	0	47		Not estimable	
Kantorova 2004	1	72	1	75	0.9%	1.04 [0.07, 16.34]	
Krag 2018	41	1644	69	1647	47.2%	0.60 [0.41, 0.87]	
Powell 1993	0	20	0	10	11.2 %	Not estimable	_
Selvanderan 2016	Ő	106	Ő	108		Not estimable	
Subtotal (95% CI)	0	1946		1929	50.3%	0.62 [0.43, 0.90]	\bullet
Total events	45		72				•
Heterogeneity: Tau ² = 0.1		= 0.85. d	f = 2 (P = 0	.65); I ^z =	0%		
Test for overall effect: Z =			- • -	-71 -	-		
Total (95% CI)		2803		2763	100.0%	0.56 [0.43, 0.73]	◆
Total events	83		161				
Heterogeneity: Tau ² = 0.1				= 0.53); l ⁼	'= 0%		0.01 0.1 1 10 100
Test for overall effect: Z =	= 4.34 (P	< 0.000	1)				Favors [SUP] Favors [No SUP]
Test for subgroup differe	ences: Ch	ni² = 0.5	9, df = 1 (P :	= 0.44), P	²=0%		

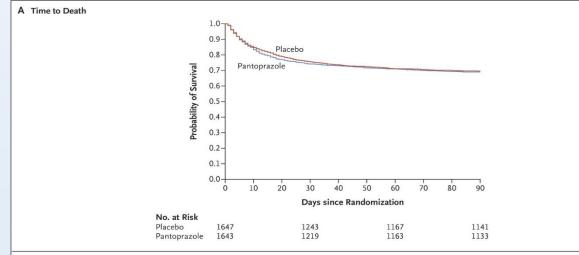
Pneumonia

	SUI		Placebo/C			Risk Ratio	Risk Ratio
Study or Subgroup	Events	lotal	Events	Total	weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
2.1.1 H2RA							
Apte 1992	13	16	9	18	11.8%	1.63 [0.97, 2.73]	
3en-Menachem 1994	13	100	6	100	5.4%	2.17 [0.86, 5.47]	
Cheadle 1985	13	98	3	97	3.4%	4.29 [1.26, 14.58]	
Hanisch 1998	10	57	12	57	7.4%	0.83 [0.39, 1.77]	
<antorova 2004<="" td=""><td>7</td><td>71</td><td>5</td><td>75</td><td>4.1%</td><td>1.48 [0.49, 4.45]</td><td></td></antorova>	7	71	5	75	4.1%	1.48 [0.49, 4.45]	
<aristadt 1989<="" td=""><td>0</td><td>50</td><td>6</td><td>54</td><td>0.7%</td><td>0.08 [0.00, 1.44]</td><td>←</td></aristadt>	0	50	6	54	0.7%	0.08 [0.00, 1.44]	←
<aristadt 1990<="" td=""><td>1</td><td>54</td><td>0</td><td>33</td><td>0.6%</td><td>1.85 [0.08, 44.24]</td><td></td></aristadt>	1	54	0	33	0.6%	1.85 [0.08, 44.24]	
_iu 2013	12	54	8	53	6.7%	1.47 [0.65, 3.31]	_
Martin 1993	2	56	6	61	2.2%	0.36 [0.08, 1.73]	
Martin 1995	ō	56	4	61	0.7%	0.12 [0.01, 2.20]	←
vietz 1993	12	84	15	79	8.3%	0.75 [0.38, 1.51]	
Misra 2005	2	45	5	47	2.2%	0.42 [0.09, 2.04]	
Reusser 1990	1	21	1	19	0.8%	0.90 [0.06, 13.48]	
Subtotal (95% CI)	'	762		754	54.2%	1.12 [0.74, 1.69]	
	00	102	00	134	J-1.2 /0	112 [014, 103]	Ť
Fotal events	86	~~ *~	80	0.000			
Heterogeneity: Tau ² = 0			, af = 12 (P =	: 0.06); P	·= 41%		
Fest for overall effect: Z	= 0.52 (P	= U.6U)					
2.1.2 PPI							
		10	-				
Alhazzani 2017	10	49	6	42	5.4%	1.43 [0.57, 3.60]	
<antorova 2004<="" td=""><td>8</td><td>72</td><td>5</td><td>75</td><td>4.3%</td><td>1.67 [0.57, 4.86]</td><td></td></antorova>	8	72	5	75	4.3%	1.67 [0.57, 4.86]	
<rag 2018<="" td=""><td>266</td><td>1644</td><td>266</td><td>1647</td><td>22.9%</td><td>1.00 [0.86, 1.17]</td><td>†</td></rag>	266	1644	266	1647	22.9%	1.00 [0.86, 1.17]	†
Liu 2013	14	58	8	53	7.0%	1.60 [0.73, 3.51]	+
Selvanderan 2016	12	106	8	108	6.2%	1.53 [0.65, 3.59]	- <u>+</u>
Subtotal (95% CI)		1929		1925	45.8%	1.05 [0.91, 1.22]	•
Heterogeneity: Tau² = 0 Fest for overall effect: Z				.50); I² =	0%		
Fotal (95% CI)		2691		2679	100.0%	1.20 [0.94, 1.53]	◆
Fotal events	396		373				
Heterogeneity. Tau = 0	.06, Chi-s	- 24.00,	, ur= 17 (P=	0.12),1	= 29%		0.01 0.1 1 10 10
Fest for overall effect: Z							Favours [SUP] Favours [Control/Placebo
Fest for subgroup differ	ences: Cl	ni² = 0.0	17. df = 1 (P :	= 0.78), I	²=0%		
					C	DI	
Study or Subgroup 3.1.1 PPI	SUP Events		Control Events To	otal W	eight M	Odds Ratio -H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
Alhazzani 2017	2	49	1	42	5.2%	1.74 [0.15, 19.95]	
El-Kersh 2017	1	55	3		5.9%	0.27 [0.03, 2.70]	_
<rag 2018<="" td=""><td>19</td><td>1644</td><td></td><td></td><td>5.9%</td><td>0.76 [0.42, 1.38]</td><td>-</td></rag>	19	1644			5.9%	0.76 [0.42, 1.38]	-
Belvanderan 2016 Subtotal (95% CI)	1	106 1854	0 · 1	108 :	3.0% 0.0%	3.09 [0.12, 76.59] 0.78 [0.45, 1.36]	
Total events Heterogeneity: Tau ² = Test for overall effect: 2				= 0.58); I	²=0%		
		1854	1	844 10	0.0%	0.78 [0.45, 1.36]	•
Total (95% CI)							

Reynolds P. Pharmacotherapy 2019;39:408-20.

Clinically Important Bleeding: Subgroup Analyses

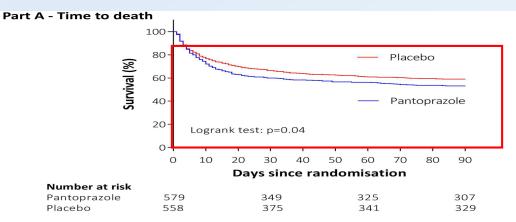
Outcome	Studies (N)	Risk Ratio (95% CI)	Heterogeneity (I ²)
SUP in Medical ICU	6 (N=502)	0.42 [0.13 to 1.39]	44%
SUP in Surgical/Trauma	7 (N=795)	0.93 [0.37 to 2.32]	0%
SUP in Neurosurgical Patients	3 (N=175)	0.45 [0.23 to 0.87] ^{**}	0%
CIB with SUP in Neurosurgical patients with or without Risk Factors	5 (N=240)	0.39 [0.21 to 0.76] ^{***}	0%
SUP After the Publication of Early Goal Directed Therapy	5 (N=656)	1.39 [0.35 to 5.49]	0%
SUP and Enteral Nutrition	7 (N=960)	0.57 [0.33 to 1.0]*****	0%
SUP and No Description of Enteral Nutrition	13 (N=741)	0.39 [0.71 to 0.91]	40%
SUP and pH Adjusted Therapy	4 (N=421)	0.47 [0.21 to 1.08]	0%


Reynolds P. Pharmacotherapy 2019;39:408-20.

What Outcome(s) is Most Important?

- Randomized, double-blind study of 3291 ICU patients with either mechanical ventilation, shock, coagulopathy, renal replacement therapy, or liver disease
- Pantoprazole 40mg iv q24hrs vs. placebo
- Results:
 - Risk factors:
 - MV = 78.7%, shock = 66.7%, coagulopathy = 19.8%, renal replacement therapy = 6.8%, liver disease = 2.9%
 - 90-day mortality:
 - P = 31.1% vs. Pl = 30.4%
 - Clinically-significant bleeding (relative anemia, transfusion or hypotension):
 - P = 2.5% vs. Pl = 4.2% (RR=0.58; 95% Cl, 0.40-0.86), NNT = 59
 - Pneumonia:
 - P = 16.2% vs. Pl = 16.2%
 - CDI (use of CDI antibiotic):
 - P = 1.2% vs. Pl = 1.5%
 - LOS:
 - Median of 6 days (both groups) with SUP for median of 4 days (both groups)

Increased Mortality in Sicker Patients with PPI?


All Patients

B Relative Risk of the Primary Outcome

Subgroup	Pantoprazole	Placebo			Relative	Risk (95% C	n	P Value for Heterogeneit
	no. of events/no. of patients in subgroup			Relative hisk (55/6 Cl)			.,	
Shock at randomization								0.92
Yes	413/1251	395/1210					1.01 (0.90-1.13)
No	97/391	104/430		-		_	1.02 (0.80-1.31)
Mechanical ventilation at randomization								0.74
Yes	399/1272	400/1310					1.03 (0.91-1.16)
No	111/370	99/330		-	-	-	0.98 (0.77-1.25)
Coagulopathy at randomization								0.54
Yes	135/352	118/299					0.95 (0.77-1.17)
No	375/1290	381/1341					1.03 (0.91-1.16)
History of liver disease								0.69
Yes	20/44	25/48	0.5				0.93 (0.60-1.44)
No	490/1598	474/1592			- i		1.02 (0.92-1.14)
Type of ICU admission								0.38
Medical	361/1045	328/994					1.04 (0.92-1.18)
Surgical	149/597	171/646					0.94 (0.78-1.14)
SAPS II score >53								0.05
Yes	272/579	229/558				_	1.13 (0.99-1.30)
No	205/929	231/967					0.92 (0.78-1.09)
All patients	510/1642	499/1640					1.02 (0.91-1.13)
			0.5	0.7	1.0	1.5	2.0	
			-				•	
			Panto	prazole E	letter Pla	cebo Better		

SAPS II > 53

Part B - Relative risk of the primary outcome

Subgroups	Pantoprazole	Placebo	Relativ (95 %	v e risk % Cl)		P value for heterogeneity		
	No. of events / no. of patients in subgroup (%)							
Shock Yes (n=945)	237/487	198/458	ŀ	— —–1	1.12 (0.98 - 1.29)	0.92		
No (n=192)	35/92	31/100			1.18 (0.81 - 1.72)			
Mechanical ventilation Yes (n=949)	229/484	186/465		——— 1	1.16 (1.00 - 1.33)	0.47		
No (n=188)	43/95	43/93			1.02 (0.75 - 1.39)			
Coagulopathy Yes (n=271)	83/160	54/111		•	1.07 (0.84 - 1.36)	0.72		
No (n=866)	189/419	175/447		—— 1	1.14 (0.98 - 1.33)			
History of liver disease Yes (n=40)	10/21	12/19	·		0.78 (0.45 - 1.36)	0.20		
No (n=1097)	262/558	217/539		⊢ ●−1	1.15 (1.01 - 1.31)			
Type of ICU admission Medical (n=771)	193/399	156/372	-	•	1.14 (0.96 - 1.32)	0.84		
Surgical (n=366)	79/180	73/186		• • •	1.11 (0.88 - 1.40)			
ALL PATIENTS (n=1137)					1.13 (1.00 - 1.29)	0.05		
		•	⁵ • • •	·	Ŷ			
			Pantoprazole better	Placebo better				

Marker S. Intensive Care Medicine 2019;45:609-18. Krag M. N Engl J Med 2018;379:2199-208.

Other Recent or Ongoing Placebo-Controlled Trials

4800; not yet started

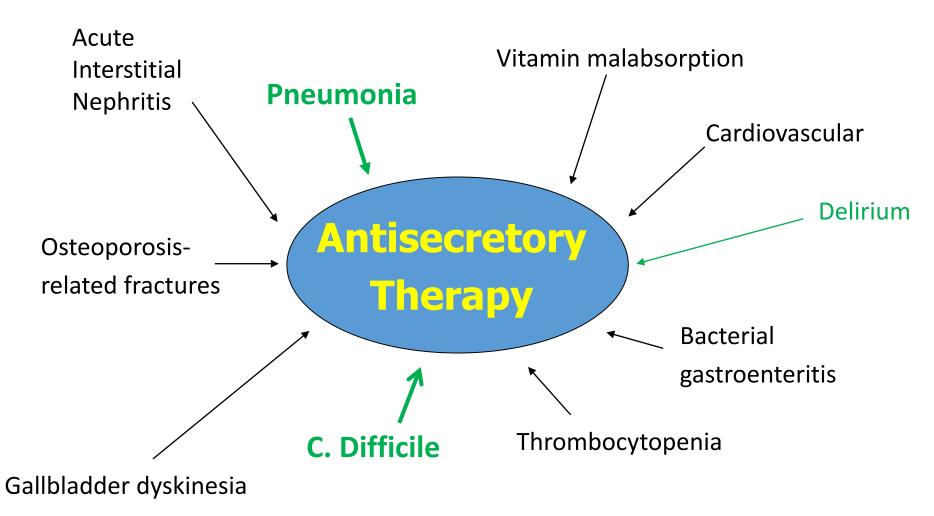
REVISE (Canada)

Completed Studies	Patients	Design	Outcomes		
REVISE (Canada, etc) Alhazzani W. Crit Care Med 2017;45:1121-9	91 mostly MICU Included prior acid suppression	R, DB Pantop 40mg IV vs. Pla	Clin Sig Bleed: 6.1% vs. 4.8% VAP: 20.4% vs. 14.3% New CDI: 4.1% vs. 2.4%		
POP-UP (Australia) Selvanderson SP. Crit Care Med 2016;44:1842- 50.	214 mixed ICU Excluded prior acid suppression	R, DB Pantop 40mg IV vs. Pla	Clin Sig Bleed: 0 vs. 0 Pneumonia: 1.9% vs. 0.9% CDI: 0.9% vs. 0		
Enteral nutrition (USA) El-Kersh K. J Crit Care 2018;43:108-13	102 MICU Included prior acid suppression	R Pantop 40mg IV vs. placebo + enteral nutrition within 24hrs	Overt (Clin Sig) Bleed: 1.8% vs. 2.1% CDI: 1.8% vs. 6.4% Similar EN intake		
Similar LOS and mortality rates between gro	oups in all studies				
Ongoing Studies ClinicalTrials.gov. ANZICS #1415-01	Patients	Design	Outcomes		

Cluster-randomized, cross-over

PPI vs. Pla or step-down

Primary: clin sig bleed


Secondary: UGIB, CDI, MV > 10 days

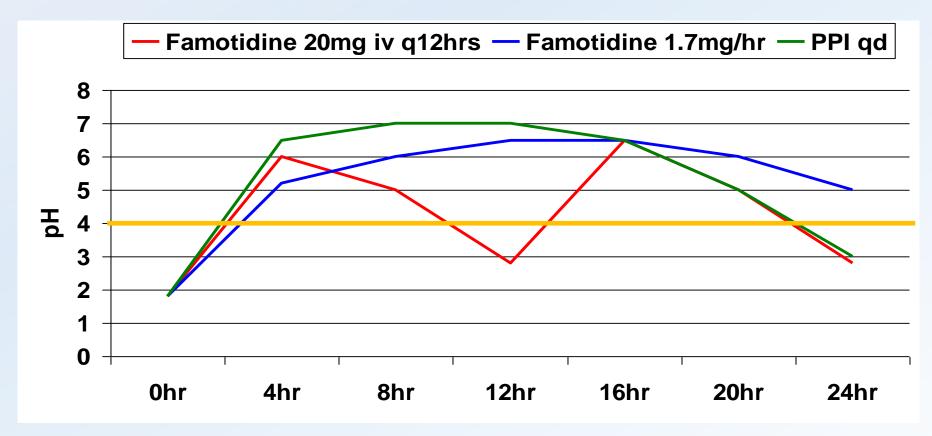
What adverse events are you most concerned about with acid suppression in the ICU patient?

- A. Thrombocytopenia
- B. Pneumonia
- C. C. difficile infection
- D. Delirium
- E. Osteoperosis

2017 ACCP Annual Meeting

Potential Complications of Acid Suppressants

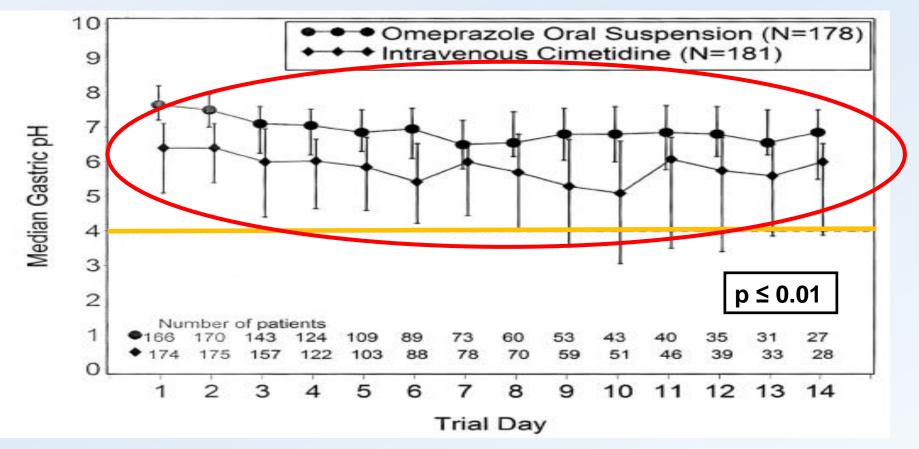
SUP and Gastric pH Monitoring


Gastric pH Obs	servation
----------------	-----------

≥4	Pepsin inactivated ↓bleeding risk? ↑infection risk?
= 5	99.9% of acid neutralized
> 6	Activation of platelets and fibrin

 \geq 7 \checkmark rebleeding incidence?

Gastric pH and Microbial Growth


• Gram -'ve microbial growth of 10^3 - 10^8 CFUs/mL in the stomach is associated with gastric pH \ge 4.0 for \ge 12 hours

2017 ACCP Annual Meeting

Baghaie AA. Crit Care Med 1995;23:687-91. MacLaren R. Ann Pharmacother 2002;36:1929-37.

PPI vs. H₂RA and Gastric pH

• Inadequate gastric pH control ≥4: C = 58% vs. O = 18% (p<0.001)

2017 ACCP Annual Meeting

Conrad S. Crit Care Med 2005;33:760-5.

Evidence of the Importance of Gastric pH

- Meta-analysis (random-effects model) of 21 trials and 3121 subjects of H2RAs vs. sucralfate:
 - Clinically significant bleeding: RR=1.19 (95% CI, 0.79-1.8)
 - ICU acquired pneumonia: RR=0.84 (95% CI, 0.72-0.98) favoring sucralfate

	H2RA	Sucralfate	RR (95% CI) Pneumonia
pH not targeted	25.7%	24.3%	0.97 (0.75-1.25)
pH > 3.5-4 targeted	19.4%	15.2%	0.76 (0.6-0.95) favoring sucralfate

ACCP Annual Meeting

Ask the Guidelines

- ASHP (1999):
 - "Whether acid-suppressing agents are associated with a higher rate of pneumonia than sucralfate is unresolved, although any difference between these medications would appear to be small"
- Surviving Sepsis Campaign:
 - In 2008,
 - "Benefits of prevention of upper GI bleed must be weighed against the potential for development of ventilator-associated pneumonia"

Pneumonia & Acid Suppression Therapy

- Numerous cohort studies of outpatients:
 - Both classes associated with pneumonia but more data with PPIs
 - Stronger association earlier in therapy
 - Often dose dependent association
- Hospitalized patients (not ICU):
 - Cohort analysis of 63, 878 admissions:
- ICU patients:
 - Numerous meta-analyses show increased pneumonia rates with H2RAs vs. sucralfate but many studies used infusions or pH dose adjustments
 - Pharmacoepidemiologic cohort study of SUP in critically ill patients (ICD-9 coded pneumonia):
 - PPI vs. H2RA, OR = 1.2 (95% CI, 1.03-1.41) by propensity and covariate adjustment
 - PPI vs. H2RA, OR = 1.23 (95% CI, 1.07-1.43) by matching

	Pneumonia OR (ICD-9 codes)
Any Acid Suppressant	1.3 (1.1-1.4)
H2RA Use (n=36,642)	1.2 (0.98-1.4)
PPI Use (n=56,330)	1.3 (1.1-1.4)

against PPIs

C. difficile & Acid Suppression Therapy

 Two meta-analyses of >33 studies and >200,000 patients showed 个 risk of *C. difficile* with PPIs (studies not designed to compare H2RAs vs. PPIs):

OR (95% CI)	C. difficile	# Needed to Harm	Other Enteric Infections
H2RA Use	1.44 (1.22-1.7)	58 with antibiotics	2.03 (1.05-3.92)
PPI Use	1.74 (1.47-2.85)	15 with antibiotics	3.33 (1.84-6.02)
H2RAs vs. PPIs	0.71 (0.53-0.97)		

Risk of relapse only evident with PPI, OR=2.51 (1.16-5.44)

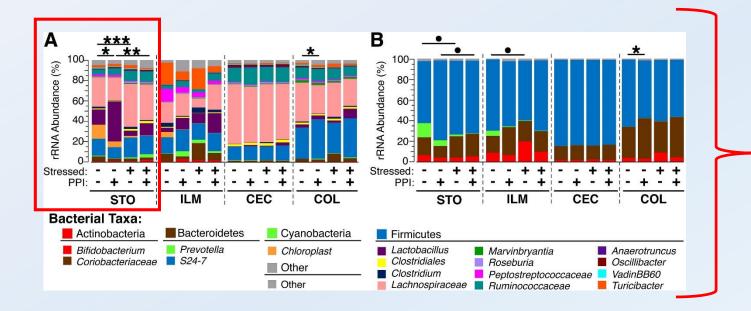
- Stronger acid suppression associated with more virulent NAP1 strain
- DFA Drug Safety Warning for PPIs

C. difficile & Acid Suppression Therapy

- Meta-analysis of 12 observational trials and 74,132 hospitalized subjects of H2RAs vs. PPIs:
 - Hospital-acquired CDI all subjects: OR = 1.39 (95% CI, 1.15-1.67)
 - Hospital-acquired CDI **SUP only**: OR = 2.17 (95% CI, 1.34-3.52)

• ICU patients:

- Pharmacoepidemiologic cohort study of SUP in critically ill patients (ICD-9 coded CDI):
 - PPI vs. H2RA, OR = 1.29 (95% CI, 1.04-1.59) by propensity and covariate adjustment
 - PPI vs. H2RA, OR = 1.31 (95% CI, 1.04-1.64) by matching


against PPIs

against PPIs

Microbiome Disturbances and Brain Function

- In animal and human studies of acute illness in cecum / colon:
 - \downarrow abundance of *Bacteroides* and *Lactobacillus* species
 - \uparrow abundance of *Clostridium*, *Enterococcaceae*, and *Proteobacteria*
- PPIs:
 - \downarrow microbiome diversity
 - \downarrow abundance of *Bacteroides* and *Bifidobacterium* in cecum / colon
 - 1 abundance Enterococcaceae, Staphylococcus, and Escherichia coli in colon
 - ↑ abundance of *Streptococcacaeae* along entire GI tract
- Microbiome influences expression of mediators that directly or indirectly modulate behavior and cognition
 - Lactobacillus and Bifidobacterium produce GABA and acetylcholine
 - Streptococci produce dopamine and serotonin
 - Escherichia and Saccharomyces produce norepinephrine and NMDA
 - Indirect modulation through bioactive chemicals: choline, short-chain fatty acids, ghrelin, CCK

Mouse Model of Stress ± PPI

In stomach:

<u>Stress</u>

↑ *Lachnospiraceae* and *Ruminoccaceae*

 \downarrow Lactobacillaceae

<u>PPI</u>

 \uparrow Lactobacillaceae

- \downarrow Bacteroidetes
- Stress + PPI

↑ *Bacteroidetes* and *Lachnospiraceae*

 \downarrow Lactobacillaceae and cyanobacteria

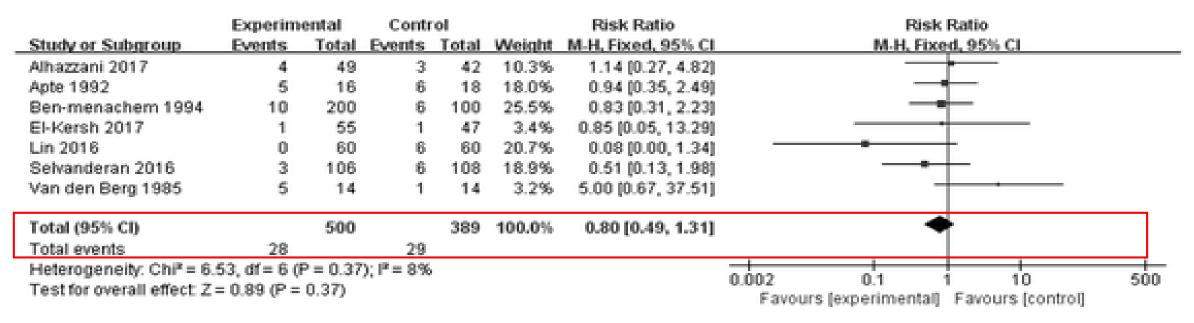
- Stress + PPI influenced expression of 124 genes in hippocampus, mostly downregulated
- Biological processes affected included:
 - dopamine receptor signaling and synapse
 - locomotor behavior
 - associative learning

– Delirium?

When to Stop? Ask the Guidelines

- ~90% of patients transferred on SUP and ~25% discharged on SUP
- ASHP (1999):
 - "not recommended for adult patients in non-ICU settings"
 - "not recommended for adult patients with fewer than two risk factors for clinically important bleeding"
- Eastern Association for the Surgery of Trauma (2008):
 - Level 2: "during mechanical ventilation or ICU stay"
 - Level 3: "until tolerating enteral nutrition"

Murphy CE. Pharmacother 2008;28:968-76. Wohlt PD. Ann Pharmacother 2007;41:1611-6. Erstad B. AJHP 1999;56:347-79. www.East.org.


Does EN Affect Therapy (just H2RA)?

Clinically Significant Bleeding:

	H2RB		Contro			Odds Ratio			Ratio	
Study or Subgroup	Events To	otal I	Events	Total	Weight	M-H, Random, 95% C	Year	r M-H, Rand	lom, 95% Cl	
1.3.1 No Enteral Nutr	rition									
Halloran 1980	2	26	8	24	5.6%	0.17 [0.03, 0.89]	1980			
Zinner 1981	14	100	20	100	11.8%	0.65 [0.31, 1.38]	1981	1	<u> </u>	
Peura 1985	1	21	7	18	3.7%	0.08 [0.01, 0.72]	1985	5 4		
Cheadle 1985	2	98	3	97	5.0%	0.65 [0.11, 4.00]	1985	5		
Groll 1986	6	114	11	107	9.4%	0.48 [0.17, 1.36]	1986	6	<u> </u>	
Reusser 1990	0	19	0	21		Not estimable	1990	D		
Karlstadt 1990	1	54	7	33	3.9%	0.07 [0.01, 0.60]	1990	D ←		
Ruiz-Santana 1991	2	19	1	30	3.1%	3.41 [0.29, 40.50]	1991	1		
Metz 1993	3	86	15	81	7.7%	0.16 [0.04, 0.57]				
Martin 1993	9	65	22	66	10.7%	0.32 [0.13, 0.77]				
Chan 1995	9	52	21	49	10.4%	0.28 [0.11, 0.70]				
Burgess 1995	0	16	5	18	2.3%	0.07 [0.00, 1.47]				
Hanisch 1998	3	57	2	57	4.9%	1.53 [0.25, 9.51]				
Kantorova 2004	2	71	1	75	3.2%	2.14 [0.19, 24.19]				
Subtotal (95% CI)		798		776	81.7%	0.37 [0.23, 0.61]			Without EN	
Total events	54		123						WITHOUT LIV	
Heterogeneity: Tau ² =	0.26: Chi ² = 1	18.60.	df = 12	(P = 0.1)	10): l ² = 3	5%				
Test for overall effect:					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1.3.2 Enteral Nutritio	n									
van den Berg 1985	5	14	1	14	3.5%	7.22 [0.72, 72.70]	1085	_		
Apte 1992		16	6	18	6.7%	0.91 [0.22, 3.84]				Pneumonia and
Ben-menachen 1994		100	6	100	8.1%	0.82 [0.24, 2.79]			<u> </u>	
Subtotal (95% CI)		130	0	132	18.3%	1.26 [0.43, 3.70]	1994	-	With EN	mortality reduced in
Total events	15	150	10	152	10.5 %	1.20 [0.45, 5.70]				mortality reduced in
1 0 1001 0 1 01110		- 00 d	13	- 0.04	. 12 - 200/					
Heterogeneity: Tau ² =			· ·	= 0.24); 1- = 30%	0				subgroup with EN
Test for overall effect:	Z = 0.43 (P =	0.67)								•
Total (95% Cl)	9	928		908	100.0%	0.47 [0.29, 0.76]		•		compared to H2RA +
Total events	69		136							
Heterogeneity: Tau ² =	0.38; Chi ² = 2	26.62.	df = 15	(P = 0.0)	03); l ² = 4	4%				
Test for overall effect:								0.01 0.1	1 10 100	
			/					Favours H2RB	Favours control	

Does EN Affect Therapy (PPI + H2RA)?

Overt Bleeding:

- No differences in mortality, CDI, ICU LOS, and duration of mechanical ventilation
- Hospital-associated pneumonia RR = 1.53 (95% CI, 1.04 2.27) against SUP but similar VAP rates

Key Takeaways

- 1. Risk factors variable and may not be consistent with current practice
- 2. Guidelines provide conflicting recommendations for the preferred SUP therapy
 - different assessments of the same data
- 3. Studies assessing acid suppressing agents are conflicting
 - H2RAs with most evidence vs. other agents
- 4. No prophylaxis warrants further study
 - acid suppressants likely increase the risk for infectious complications, especially PPIs
 - the risk appears greatest with aggressive acid suppression
 - the role of enteral nutrition is unclear
- 5. Stop SUP when extubated or ICU discharge

6. PEPTIC Study

 cluster, randomized, cross-over study of PPI vs. H2RAs in 50 ICUs on in-hospital mortality a Meeting

What are the most important issues / controversies surrounding SUP that you would like resolved?

- A. Identification of risk factors
- B. Whether SUP improves outcomes relative to risks of adverse events
- C. Agent(s) and dose of choice
- D. What to do when patients are admitted with home SUP agent
- E. When to discontinue SUP (including does enteral nutrition provide SUP)

2017 ACCP Annual Meeting

SCCM Taskforce Questions

- What are the risk factor(s) for developing clinically important upper gastrointestinal bleeding (UGIB)?
- Should we use pharmacologic stress ulcer prophylaxis (versus not)?
- What class of agents is first-line therapy?
 - Clinically important UGIB, overt UGIB, pneumonia, CDI, mortality, LOS.
 - Does route of administration (IV or PO) matter on prevention of UGIB?
 - Does dose frequency (daily or twice daily) matter on prevention of UGIB?
 - Does combination therapy with PPI / H2RA and sucralfate versus PPI / H2RA alone matter?
- Should prophylaxis be discontinued when risk factor(s) are no longer present versus continuing until ICU discharge?
- Should home use be continued?
 - For prevention of UGIB in patients at risk?
- For maintenance of home therapy in patients not at risk?

Questions