Hyperlipidemia: Past and Present

Rebecca Khaimova, PharmD The Brooklyn Hospital Center Rkhaimova@tbh.org

Conflicts of Interest

• None to disclose

Learning Objectives for Pharmacist

- Describe the pathophysiology of hyperlipidemia
- Compare the 2013 ACC/AHA Blood Cholesterol guidelines and 2017 AACE Dyslipidemia and Prevention of CVD guidelines
- Analyze the literature that contributed to the 2018 ACC/AHA guideline on the Management of Blood Cholesterol
- Evaluate how these updated guidelines impact clinical practice

Learning Objectives for Pharmacy Technicians

- Define dyslipidemia
- Describe the mechanism behind cholesterol
- Recognize the common treatments for lipid management

Introduction

- 71 million American adults (33.5%) have high lowdensity lipoproteins (LDL)
- Only 1 out of every 3 adults with high LDL cholesterol have it under control
- Less than half of adults with high LDL cholesterol get treatment
- Hinds, et al. found only 40% of patients are appropriately prescribed a moderate high intensity statin

Hyperlipidemia

- Hyperlipidemia is a disorder characterized by abnormally high levels of lipids
- Cholesterol and its lipoproteins are related to atherosclerotic cardiovascular disease (ASCVD)
 - People with high cholesterol have about twice the risk of having heart disease

Pathophysiology

Diagnostics

Fasting lipid panel (10 hr)	Normal	Borderline	High
	range		
Total cholesterol (TC)	< 200	200 - 239	> 240
LDL – C	<130	130 - 159 > 16	
HDL – C	> 40 (men)	< 40 (men)	
	> 50 (women)	< 50 (women)	
Triglycerides (TG)	< 150	150 – 199	> 200

Note: LDL – C calculated by: TC minus (HDL – C) minus (TG divided by 5)

• Not valid to calculate if TG are greater than 250 mg/dL

Risk Assessment

Variables	Framingham Risk Assessment Tool	10 – year Risk of Coronary Event (ASCVD risk)
Population	General population from Framingham Massachusetts	Based on cohort studies funded by the NHLBI
Age	30 – 74 years	40 – 79 years
Factors	 Sex Age Smoking status Total cholesterol HDL - C Diabetes Systolic blood pressure (SBP) Hypertension treatment 	 Sex Age Smoking status Total cholesterol HDL - C Diabetes SBP Hypertension treatment (if SBP > 120 mmHg)
Target CVD Events	 Angina, myocardial infarction, CHD death, coronary insufficiency 	 Myocardial infarction, CHD death, stroke
CHD: coronary a	rtery disease	

Additional Tests

Apolipoproteins

- Useful for individuals are at higher risk
- Assess success of LDL C lowering therapy

Additional test to stratify ASCVD risk

- hsCRP
- Lipoprotein-associated phospholipase A2 (Lp-PLA2)
- Coronary artery calcification (CAC)
- Carotid intima media thickness (CIMT)

Non – Pharmacological Management

At least 30 minutes of moderate-intensity physical activity

• 4-6 times a week

Reduced calorie diet

• Lower intake of fats and cholesterol

Tobacco cessation

Pharmacology Management – High Intensity Statins

High intensity statin	Dose range	Characteristics	Administration
Rosuvastatin (Crestor)	20 – 40 mg	Hydrophilic	Anytime
Atorvastatin (Lipitor)	40 – 80 mg	Lipophillic	

Pharmacology Management – 30 - 49% Moderate Intensity Statins

Moderate intensity statin	Dose range	Characteristics	Administration
Rosuvastatin (Crestor)	10 – 20 mg	Hydrophilic	Anytime
Atorvastatin (Lipitor)	5 – 10 mg	Lipophillic	Anytime
Simvastatin (Zocor)	20 – 40 mg	Lipophillic	Night
Lovastatin (Mevacor)	40 mg	Lipophillic	Night
Pravastatin (Pravachol)	40 – 80 mg	Hydrophilic	Anytime
Fluvastatin (Lescol)	40 – 80 mg	Lipophillic	Night
Pitavastatin (Livalo)	2 – 4 mg	Lipophillic	Anytime

Pharmacology Management – Low Intensity Statins

Low intensity statin	Dose range
Simvastatin (Zocor)	10 mg
Lovastatin (Mevacor)	20 mg
Pravastatin (Pravachol)	10 – 20 mg
Fluvastatin (Lescol)	20 – 40 mg
Pitavastatin (Livalo)	1 mg

Monitoring Parameters -Statins

Adverse Effects	Monitoring
 Myalgia Myopathy Rhabdomyolysis Hepatic dysfunction Renal dose adjustments Increase glucose Pregnancy category X Drug interactions 	 Fasting lipid panel Liver function panel Creatinine kinase

Pharmacology Management – Cholesterol Absorption Inhibitors

- Zetia (ezetimibe) 10 mg PO once daily
- Lowers LDL 10 18 %
- With statins lowers LDL additional 25% (IMPROVE-IT trial)
 - Modest decrease in cardiovascular events
- Adverse effects
 - Increase liver function tests
 - Myopathy
 - Rhabdomyolysis
 - Upper respiratory infection
 - Diarrhea
 - Sinusitis

Pharmacology Management – PCSK9 Inhibitors

- Human monoclonal antibodies that bind to PCSK9 and inhibit them
- Lowers LDL by 48 71 %

Pharmacology Management – PCSK9 Inhibitors

Medications	Dose ranges	Adverse Effects
Alirocumab (Praluent)	 HeFH/ASCVD: 75 – 150 mg SC once every 2 weeks 300 mg SC monthly 	 Nasopharyngitis Injection site actions Influenza Upper respiratory infactions
Evolocumab (Repatha)	HeFH/ASCVD:140 SC once every 2 weeks420 mg monthly	 Urinary tract infections Back pain (evolocumab) Increase liver function tests (alirocumab)
	 HoFH: 420 mg SC monthly 3 injections of 140 mg in 30 minute intervals SC monthly 	

HeFH: Heterozygous familial hypercholesterolemia HoFH: Homozygous Familial Hypercholesterolemia

Pharmacology Management -Miscellaneous

Class	Medications	TG	LDL	Adverse Effects
Fibrates	Gemfibrozil Fenofibrate	20-35%	20-25%	 Myalgia Increases liver function tests GI symptoms May increase SCr Dyspensia
				 Upper respiratory tract infections
Fish – oil	Omega – 3 oil	27-45%	20-42%	 GI symptoms May prolong bleeding Increases in liver function tests Increased incidence in A-fib or aflutter episodes Avoid if hypersensitivity to fish and/or shellfish

Pharmacology Management -Miscellaneous

Class	Medications	TG	LDL	Adverse Effects					
Niacin	Niacin IR	20 – 30%	20 - 30%	20-30%	20-30%	20-30% 10-25%	20-30%	10 – 25%	FlushingNausea/vomiting/diarrh
	Niaspan ER			ea • Increases uric acid levels					
	Slo - Niacin			 Increase glucose Increase liver functions test 					
Bile acid sequestrants	Cholestyramine		15 – 25%	GI symptomsIncrease liver functions					
	Colestipol			tests • May increase TG					
	Colesevelam								

Assessment Question 1

Which of the following is a first – line option for lipid management?

- A. Lifestyle modifications
- B. Statin therapy
- C. Niacin
- D. Ezetimibe

Timeline of Hyperlipidemia Guidelines

2013 ACC/AHA Blood Cholesterol Guidelines 2017 AACE Dyslipidemia and Prevention of CVD Guidelines 2018 ACC/AHA guideline on the Management of Blood Cholesterol

2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Endorsed by the American Academy of Physician Assistants, American Association of Cardiovascular and Pulmonary Rehabilitation, American Pharmacists Association, American Society for Preventive Cardiology, Association of Black Cardiologists, Preventive Cardiovascular Nurses Association, and WomenHeart: The National Coalition for Women With Heart Disease

EXPERT PANEL MEMBERS

Neil J. Stone, MD, MACP, FAHA, FACC, Chair; Jennifer G. Robinson, MD, MPH, FAHA, Vice Chair; Alice H. Lichtenstein, DSc, FAHA, Vice Chair; C. Noel Bairey Merz, MD, FAHA, FACC; Conrad B. Blum, MD, FAHA; Robert H. Eckel, MD, FAHA; Anne C. Goldberg, MD, FACP, FAHA; David Gordon, MD*; Daniel Levy, MD*; Donald M. Lloyd-Jones, MD, SCM, FACC, FAHA; Patrick McBride, MD, MPH, FAHA; J. Sanford Schwartz, MD; Susan T. Shero, MS, RN*; Sidney C. Smith, Jr, MD, FACC, FAHA; Karol Watson, MD, PhD, FACC, FAHA; Peter W. F. Wilson, MD, FAHA

METHODOLOGY MEMBERS

Karen M. Eddleman, BS; Nicole M. Jarrett; Ken LaBresh, MD; Lev Nevo, MD; Janusz Wnek, PhD

Right Patient, Right Statin, Right Dosage

- Many people at high risk for CVD events, were not receiving statins
- **ONLY** 58.2% of individuals with CHD and 52% of individuals with diabetes who are 40 years of age and older were taking statin

2013 ACC/AHA Guidelines – Group 1

2013 ACC/AHA Guidelines – Group 2

Diabetes (LDL-C 70-189 mg/dl and Age 40-75 years)

Moderate intensity statin High intensity statin if 10 - year ASCVD risk $\geq 7.5 \%$

2013 ACC/AHA Guidelines – Risk versus benefits

- Potential for ASCVD risk-reduction benefits
- Potential for ADR and interactions
- Heart-healthy lifestyle
- Patient preferences
- Consider LDL-C ≥ 160 mg/dl, family history, lifetime ASVD risk, abnormal CAC score or ABI or hs-CRP ≥ 2 mg/dl

2013 ACC/AHA Guidelines

- LDL C monitoring is recommended for adherence and efficacy, but NOT for treatment goals
- Found no supporting evidence for the routine use of non-statin drugs in combination with statins

Benefits of Statins

	Rosuvastatin to prevent vascular events in men and	Efficacy of high intensity atorvastatin versus moderate
	women with elevated C-	intensity statin for acute
	reactive protein	coronary syndrome
•	Rosuvastatin versus placebo	• High-intensity or moderate- intensity atoryastatin
•	Population: patients with normal LDL and elevated hs-CRP	 Population: diabetics with acute coronary syndrome
•	Outcome: reduction in incidence of major CV events	• Outcome: cardiovascular benefit
•	Statin reduced LDL and hs-CRP, and also reduced major CV events ($NNT= 25$)	 High-intensity had an additional 44.5% decrease in major cardiovascular events (P = 0.018)

Assessment Question 2

The 2013 ACC/AHA Blood Cholesterol guidelines identifies which group(s) should receive a high – intensity statin [SELECT ALL THAT APPLY]?

- A. 40 year old patient that had a stroke
- B. 65 year old male with a LDL level of 50 mg/dl
- C. 31 year old diabetic with a LDL level of 82 mg/dl
- D. 29 year old diabetic with a LDL level of 200 mg/dl

AACE 2017 Guidelines

AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF DYSLIPIDEMIA AND PREVENTION OF CARDIOVASCULAR DISEASE

Paul S. Jellinger, MD, MACE, Chair¹; Yehuda Handelsman MD, FACP, FACE, FNLA, Co-Chair²; Paul D. Rosenblit, MD, PhD, FNLA, FACE¹⁴; Zachary T. Bloomgarden, MD, MACE⁴; Vivian A. Fonseca, MD, FACE⁸; Alan J. Garber, MD, PhD, FACE⁹; George Grunberger, MD, FACP, FACE¹⁰; Chris K. Guerin, MD, FNLA, FACE¹¹; David S. H. Bell, MD, FACP, FACE³; Jeffrey I. Mechanick, MD, FACP, FACE, FACN, ECNU¹²; Rachel Pessah-Pollack, MD, FACE¹³; Kathleen Wyne, MD, PhD, FNLA, FACE¹⁶; Donald Smith, MD, MPH, FACE¹⁵; Eliot A. Brinton, MD, FAHA, FNLA⁵; Sergio Fazio, MD, PhD⁷ and Michael Davidson, MD, FACC, FACP, FNLA⁶

2017 AACE Guidelines

PATIENTS WILL BENEFIT FROM LDL – C TARGET GOALS

Risk Category	Risk factors	LDL – C (mg/dl)	Non-HDL – C (mg/dl)	Apo B (mg/dl)
Low Risk	• 0 risk factors	< 130	< 160	Not recommended
Moderate Risk	 <a> 2 risk factors and 10 - year risk < 10% 	< 100	< 130	< 90
High Risk	 ≥ 2 risk factors and 10 year risk 10 – 20 % Diabetes or CKD stage 3 or 4 with no other risk factors 	< 100	< 130	< 90

2017 AACE Guidelines cont.

Risk Category	Risk factors	LDL – C (mg/dl)	Non-HDL – C (mg/dl)	Apo B (mg/dl)
Very High Risk	 Established or recent ASCVD, 10 year risk > 20% Diabetes or CKD stage 3 or 4 with 1 or more risk factor(s) Heart failure 	< 70	< 100	< 80
Extreme Risk	 ASCVD in patient after achieving an LDL – C < 70 Clinical cardiovascular disease in patients with diabetes, CKD stage 3/4, or heart failure 	< 55	< 80	< 70

Major Risk Factors

- High LDL C
- Polycystic ovary syndrome (PCOS)
- Cigarette smoking
- Hypertension (BP \geq 140/90 or on BP medication)
- Low HDL C (< 40 mg/dl)
- Family history of CHD
- Chronic renal disease (CKD) stage 3 or 4
- Evidence of coronary artery calcification
- Age (men \geq 45; women \geq 55 years)

Note: subtract risk factor if high HDL – C

2017 AACE Guidelines cont.

- Used Framingham risk score assessment
- Ezetimibe may be considered for:
 - Monotherapy for statin intolerant individuals
 - In combination with statins to further reduce LDL C and ASCVD risk
- PCSK9 inhibitors can be considered for:
 - In combination with statin therapy for LDL C lowering in individuals with FH
 - Individuals with clinical CV disease who are unable to reach LDL – C with maximum tolerated statin

Targeting LDL Levels

- Studies showing LDL levels are associated with decreased CVD event rate
- Meta analysis of eight randomized controlled statin trial
 - 38,153 diabetic patients
 - Achieved very low LDL C levels (< 50 mg/dl or 50 70 mg/dl) had a lower risk for major CVD events > moderately low levels (75 100 mg/dl)

IMPROVE – IT Trial

- Evaluated addition of ezetimibe 10 mg to **moderate**intensity statin (simvastatin)
- Population: high risk patients with recent acute coronary syndrome who has one additional high risk characteristic
- Outcome: ASCVD event reduction
- Results: ASCVD events were reduced by 10% in the ezetimibe group (NNT = 50)
 - Addition of ezetimibe reduced LDL C to a mean of 54 mg/dl compared to 70 mg/dl in simvastatin monotherapy

group		Simvastatin	Ezetimibe	P Value
	Goal of LDL < 70 and hs-CRP < 2 at one month	30.5 %	50.6 %	< 0.001

ODYSSEY trial

- Evaluated alirocumab versus placebo
- Population: high risk for cardiovascular events, LDL cholesterol ≥ 70 mg/dl, and on maximum tolerated statin
- Outcome: percent change in LDL cholesterol from baseline to week 24

ODYSSEY trial

- Results (alirocumab versus placebo):
 - Change in LDL: -74.2 mg/dl versus -3.6 mg/dl (*P* < 0.001)
 - LDL < 70 mg/dl: 79.3% versus 8.0% (*P* < 0.001)

Endpoint: MACE

Assessment Question 3

The 2017 AACE Dyslipidemia and Prevention of CVD guidelines targets a goal LDL level < 70 mg/dl for which patient(s) [SELECT ALL THAT APPLY]?

- A. Diabetic patient with a history of a NSTEMI
- B. Diabetic patient with an ASCVD = 11.5%
- C. Female patient that smokes with an ASCVD = 25%
- D. Male patient with an ASCVD = 5.1%

2018 ACC/AHA Guidelines

2018

AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

WRITING COMMITTEE MEMBERS

Scott M. Grundy, MD, PhD, FAHA, Chair* Neil J. Stone, MD, FACC, FAHA, Vice Chair*

Alison L. Bailey, MD, FACC, FAACVPR[†] Craig Beam, CRE^{*} Kim K. Birtcher, MS, PharmD, AACC, FNLA[‡] Roger S. Blumenthal, MD, FACC, FAHA, FNLA§ Lynne T. Braun, PhD, CNP, FAHA, FPCNA, FNLA Sarah de Ferranti, MD, MPH^{*} Joseph Faiella-Tommasino, PhD, PA-C¶ Daniel E. Forman, MD, FAHA^{**} Ronald Goldberg, MD^{††} Paul A. Heidenreich, MD, MS, FACC, FAHA^{‡‡} Mark A. Hlatky, MD, FACC, FAHA^{*} Daniel W. Jones, MD, FAHA§ Donald Lloyd-Jones, MD, SCM, FACC, FAHA* Nuria Lopez-Pajares, MD, MPH§§ Chiadi E. Ndumele, MD, PhD, FAHA* Carl E. Orringer, MD, FACC, FNLA || || Carmen A. Peralta, MD, MAS* Joseph J. Saseen, PharmD, FNLA, FAHA¶¶ Sidney C. Smith, Jr, MD, MACC, FAHA* Laurence Sperling, MD, FACC, FAHA, FASPC*** Salim S. Virani, MD, PhD, FACC, FAHA* Joseph Yeboah, MD, MS, FACC, FAHA+++

Very High – Risk for Future ASCVD Events

Major ASCVD Events

- Recent ACS (within past 12 months)
- History of MI (other than recent ACS)
- History of ischemic stroke
- Symptomatic peripheral arterial disease

High – Risk Conditions

- Age \geq 65 years
- Heterozygous familial hypercholesterolemia
- History of prior coronary artery bypass surgery ior percutaneous coronary intervention outside of major ASCVD event(s)
- Diabetes
- Hypertension
- CKD (eGFR 15 -59 mL/min)
- Current smoking
- Persistently elevated LDL c despite maximally tolerated statin and ezetimibe
- History of congestive HF

2018 ACC/AHA Guidelines Key Updates

Severe primary hypercholesterole mia (LDL – C \geq 190 mg/dl)

- Without calculating 10 year ASCVD start high – intensity statin
- If LDL − C remains ≥ 100 mg/dl consider adding ezetimibe
- If LDL C > 100 mg/dl with statin and ezetimibe then consider adding PCSK9 inhibitor

Patients 40 - 75years with diabetes and LDL-C ≥ 70 mg/dl

- Start moderate intensity statin without calculating 10 year ASCVD risk
- If at higher risk (multiple risk factors or 50 75 years) reasonable to start high intensity statin

Diabetic Risk Enhancers

Risk Enhancers

- Long duration (≥10 years of type 2 diabetes or ≥ 20 years of type 1 diabetes)
- Albuminuria \geq 30 mcg of albumin/mg creatinine
- eGFR < 60 mL/min
- Retinopathy
- Neuropathy
- Ankle-brachial index < 0.9

2018 ACC/AHA Guidelines Key Updates Cont.

Adults 40 - 75 years without diabetes and with LDL - C level ≥ 70 mg/dl at 10 - year ASCVD risk ≥ 7.5 %

- Start moderate intensity statin
- Consider CAC (coronary artery calcium) test

Adults 40 – 75 years without diabetes and 10 – year ASCVD risk is 7.5 – 19.9 % Risk-enhancing factors favor initiation of statin therapy

Adults 40 – 75 years without diabetes and with LDL – C levels \geq 70 – 189 mg/dl at a 10 – year ASCVD risk of \geq 7.5 – 19.9 %

• If unsure then consider measuring CAC

Risk – Enhancing Factors

Family history of premature ASCVD	Males: age < 55 years Females: age < 65 years			
Primary hypercholesterolemia	LDL: 160 – 189 mg/dl Non – HDL: 190 – 219 mg/dl			
Metabolic syndrome	Waist circumference Elevated triglycerides, BP, glucose Low HDL – C (at least 3)			
Chronic kidney disease	eGFR 15 – 59 mL/min Not treated with dialysis or kidney transplant			
Chronic inflammation conditions	Psoriasis, RA, HIV/AIDS			
History of premature menopause, pregnancy – associated conditions (preeclampsia)				
High – risk race/ethnicities	South Asian ancestry			
Lipid/biomarkers	Elevated CRP, apoB, triglycerides			

FOURIER Trial

- Evaluated addition of evolocumab compared to placebo
- Population: patient with clinical atherosclerotic disease and LDL > 70 despite moderate or high intensity statin therapy
- Outcome: Reduction of major cardiovascular (CVD) events
- Results: The addition of evolocumab resulted in an absolute 1.5% reduction in major CVD events Duration: 2 years
 - Overall **no CV specific mortality** benefit with evolocumab

FOURIER Trial

FOURIER Trial

Table 2. Primary and Secondary End Points.								
Outcome	Evolocumab (N = 13,784)	Placebo (N = 13,780)	Hazard Ratio (95% CI)	P Value*				
	no. of patients (%)							
Primary end point: cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization	1344 (9.8)	1563 (11.3)	0.85 (0.79–0.92)	<0.001				
Key secondary end point: cardiovascular death, myocardial infarction, or stroke	816 (5.9)	1013 (7.4)	0.80 (0.73–0.88)	<0.001				
Other end points								
Cardiovascular death	251 (1.8)	240 (1.7)	1.05 (0.88-1.25)	0.62				
Due to acute myocardial infarction	25 (0.18)	30 (0.22)	0.84 (0.49–1.42)					
Due to stroke	31 (0.22)	33 (0.24)	0.94 (0.58–1.54)					
Other cardiovascular death	195 (1.4)	177 (1.3)	1.10 (0.90–1.35)					
Death from any cause	444 (3.2)	426 (3.1)	1.04 (0.91–1.19)	0.54				
Myocardial infarction	468 (3.4)	639 (4.6)	0.73 (0.65–0.82)	<0.001				
Hospitalization for unstable angina	236 (1.7)	239 (1.7)	0.99 (0.82–1.18)	0.89				
Stroke	207 (1.5)	262 (1.9)	0.79 (0.66–0.95)	0.01				

Assessment Question 4

Which patient's treatment is not influenced by a 10 – year ASCVD risk score?

- A. Patient with a history of a STEMI
- B. Non diabetic patient with a LDL level of 83 mg/dl
- C. Diabetic patient with a LDL level of 83 mg/dl
- D. All of the above

Assessment Question 5

Which patients can we consider adding ezetimibe?

- A. 40 year old female patient without diabetes and LDL \geq 70 mg/dl and ASCVD = 8.7%
- B. 55 year old male patient without diabetes and ASCVD = 10.3%
- C. Very high-risk ASCVD patients on maximally tolerated statin and LDL remains \geq 70 mg/dl

Role of a Pharmacist

- Optimizing therapy
 - Identifying patients that should be on statin therapy
 - Follow up with lipid panel
 - Recommend titration of dose
- Educate about CV benefits of lipid management

Conclusion

- Statins are efficacious LDL C lowering agents that also have cardiovascular benefit
- Statin doses should be optimized to target LDL C level
- Ezetimibe can be considered in addition to statins when LDL C level are not at goal
- PCSK9 inhibitors can potentially be considered if statins and ezetimibe are not sufficient
- Can consider utilizing CAC in addition to ASCVD risk score when the benefit of statin therapy is unknown
- Pharmacist can play an important role optimizing hyperlipidemia therapy

References

- 1. Benajmin, J et al. Heart disease and stroke statistics 2017 update: a report from the American Heart Association. Circulation. 2017;135:e146-e603. Provides annual statistics and epidemiology on the burden of cardiovascular disease and risk factors in the United States.
- 2. National Institute for Health and Care Excellence. Lipid modification: cardiovascular risk assessment and the modification of blood lipid for the primary and secondary prevention of cardiovascular disease. 2014.
- 3. Karalis DG, Victor B, Ahedor L, et al. Use of lipid-lowering medications and the likelihood of achieving optimal LDL-cholesterol goals in coronary artery disease patients. Cholesterol. 2012;2012:861924.
- 4. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atheros clerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol* 2014;63:2889-934.
- 5. Jellinger PS, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr Pract. 2017;23:1–87. doi: 10.4158/EP171764.APPGL.
- 6. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–696.
- 7. Ridker PM, et al. Rosuvastatin to prevent vascular events in med and women with elevated c-reactive protein. The New England Journal of Medicine. 2008. 359(21):2195-2207.
- 8. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004; 291:1071–80.
- 9. Liu Z, Xu Y, Hao H, et al. Efficacy of high intensity atorvastatin versus moderate intensity atorvastatin for acute coronary syndrome patients with diabetes mellitus. Int J Cardiol. 2016;222:22-26.
- 10. Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol 2014;64:485-94.
- 11. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25)2387-97.
- 12. Sabatine MS, Giuliano PR, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372:1500-1509.
- 13. Cording MA, Engelbrecht-Zadvorny EB, Pettit BJ, et al. Development of a pharmacist-managed lipid clinic. Ann Pharmacother. 2002;36:892–904.
- 14. Lamprecht DG, Shaw PB, King JB, et al. Trends in high-intensity statin use and low-density lipoprotein cholesterol control among patients enrolled in a clinical pharmacy cardiac risk service. J Clin Lipidol. 2018;12(4)999–1007.
- 15. Prudencio J, Cutler T, Roberts S, et al. The effect of clinical pharmacist led comprehensive medication management on chronic disease state goal attainment in a patient centered medical home. J Manag Care Spec Pharm. 2018;24(5):423–429.

Hyperlipidemia: Past and Present

Rebecca Khaimova, PharmD The Brooklyn Hospital Center Rkhaimova@tbh.org